OFFSET
1,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,0,0,1,-1).
FORMULA
G.f.: x*(3+x+x^2+2*x^3+x^4) / ( (1+x)*(x^2+1)*(x-1)^2 ). - R. J. Mathar, Nov 06 2015
From Wesley Ivan Hurt, May 27 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (8*n-1-i^(2*n)-(1-2*i)*i^(-n)-(1+2*i)*i^n)/4 where i=sqrt(-1).
E.g.f.: 1 + sin(x) - cos(x)/2 + 2*x*sinh(x) + (2*x - 1/2)*cosh(x). - Ilya Gutkovskiy, May 27 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)+1)*Pi/16 + (4-3*sqrt(2))*log(2)/16 + 3*sqrt(2)*log(2-sqrt(2))/8. - Amiram Eldar, Dec 26 2021
MAPLE
A047499:=n->(8*n-1-I^(2*n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4: seq(A047499(n), n=1..100); # Wesley Ivan Hurt, May 27 2016
MATHEMATICA
Table[(8n-1-I^(2n)-(1-2*I)*I^(-n)-(1+2*I)*I^n)/4, {n, 80}] (* Wesley Ivan Hurt, May 27 2016 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [3, 4, 5, 7]]; // Wesley Ivan Hurt, May 27 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved