login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A372527
Expansion of g.f. A(x) satisfying A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).
1
1, 2, 6, 24, 110, 544, 2824, 15168, 83566, 469568, 2680496, 15500000, 90596880, 534368880, 3176515904, 19010408448, 114444697214, 692566900736, 4210541805680, 25704699739296, 157508966594744, 968415775598608, 5972400758691808, 36936064677976320, 229015813606251672
OFFSET
1,2
COMMENTS
Compare to F( F(x)^2 ) = x*F(x)/(1 - F(x)) when F(x) = x/(1-x).
Conjecture: a(2^k + 1) == 2 (mod 4) for k >= 0, and a(n) == 0 (mod 4) for n > 0 when n is not of the form 2^k + 1.
LINKS
FORMULA
G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).
(2) A( A(x^2)*(1 - 2*x)/x ) = x.
(3) A( x^2*A(x)^2/(1 - 2*A(x))^2 ) = x*A(x)^3/(1 - 2*(1+x)*A(x)).
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 6*x^3 + 24*x^4 + 110*x^5 + 544*x^6 + 2824*x^7 + 15168*x^8 + 83566*x^9 + 469568*x^10 + 2680496*x^11 + 15500000*x^12 + ...
where A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).
RELATED SERIES.
Series_Reversion( A(x) ) = x - 2*x^2 + 2*x^3 - 4*x^4 + 6*x^5 - 12*x^6 + 24*x^7 - 48*x^8 + 110*x^9 - 220*x^10 + 544*x^11 - 1088*x^12 + ...
which equals A(x^2)/x - 2*A(x^2).
The square of the g.f. A(x) starts
A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 72*x^5 + 352*x^6 + 1816*x^7 + 9720*x^8 + 53440*x^9 + 299904*x^10 + 1710648*x^11 + 9887336*x^12 + ...
where
A( A(x)^2 ) = x^2 + 4*x^3 + 18*x^4 + 88*x^5 + 454*x^6 + 2432*x^7 + 13392*x^8 + 75312*x^9 + 430606*x^10 + 2495232*x^11 + 14619672*x^12 + ...
which equals x*A(x)/(1 - 2*A(x)).
SPECIFIC VALUES.
Radius of convergence r satisfies A(r) = 1/3 at r = A(1/9) given below.
A(1/7) = 0.241813310611551220817899738183178164198414429806944245427...
A(1/8) = 0.183769291658204237933331788389613939490616376081980660279...
A(1/9) = 0.152116846037417910191393667087080967002339480852805927801...
A(1/16) = 0.072296818077433380544156938042004242365657632791493646470...
A(1/25) = 0.043659522607225680741528652737350659693714843830834115952...
A(t) = 1/4 at t = 0.144593636154866761088313876084008484731315265582987...
A(t) = 1/5 at t = 0.130978567821677042224585958212051979081144531492502...
PROG
(PARI) {a(n) = my(A=[0, 1]); for(i=1, n, A = concat(A, 0);
A[#A] = polcoeff( x*Ser(A)/(1 - 2*Ser(A)) - subst(Ser(A), x, Ser(A)^2 ), #A) ); A[n+1]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A141254 A366706 A216879 * A138020 A046646 A342284
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 13 2024
STATUS
approved