login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. A(x) satisfying A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).
1

%I #13 May 14 2024 00:42:00

%S 1,2,6,24,110,544,2824,15168,83566,469568,2680496,15500000,90596880,

%T 534368880,3176515904,19010408448,114444697214,692566900736,

%U 4210541805680,25704699739296,157508966594744,968415775598608,5972400758691808,36936064677976320,229015813606251672

%N Expansion of g.f. A(x) satisfying A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).

%C Compare to F( F(x)^2 ) = x*F(x)/(1 - F(x)) when F(x) = x/(1-x).

%C Conjecture: a(2^k + 1) == 2 (mod 4) for k >= 0, and a(n) == 0 (mod 4) for n > 0 when n is not of the form 2^k + 1.

%H Paul D. Hanna, <a href="/A372527/b372527.txt">Table of n, a(n) for n = 1..520</a>

%F G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.

%F (1) A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).

%F (2) A( A(x^2)*(1 - 2*x)/x ) = x.

%F (3) A( x^2*A(x)^2/(1 - 2*A(x))^2 ) = x*A(x)^3/(1 - 2*(1+x)*A(x)).

%e G.f.: A(x) = x + 2*x^2 + 6*x^3 + 24*x^4 + 110*x^5 + 544*x^6 + 2824*x^7 + 15168*x^8 + 83566*x^9 + 469568*x^10 + 2680496*x^11 + 15500000*x^12 + ...

%e where A( A(x)^2 ) = x*A(x)/(1 - 2*A(x)).

%e RELATED SERIES.

%e Series_Reversion( A(x) ) = x - 2*x^2 + 2*x^3 - 4*x^4 + 6*x^5 - 12*x^6 + 24*x^7 - 48*x^8 + 110*x^9 - 220*x^10 + 544*x^11 - 1088*x^12 + ...

%e which equals A(x^2)/x - 2*A(x^2).

%e The square of the g.f. A(x) starts

%e A(x)^2 = x^2 + 4*x^3 + 16*x^4 + 72*x^5 + 352*x^6 + 1816*x^7 + 9720*x^8 + 53440*x^9 + 299904*x^10 + 1710648*x^11 + 9887336*x^12 + ...

%e where

%e A( A(x)^2 ) = x^2 + 4*x^3 + 18*x^4 + 88*x^5 + 454*x^6 + 2432*x^7 + 13392*x^8 + 75312*x^9 + 430606*x^10 + 2495232*x^11 + 14619672*x^12 + ...

%e which equals x*A(x)/(1 - 2*A(x)).

%e SPECIFIC VALUES.

%e Radius of convergence r satisfies A(r) = 1/3 at r = A(1/9) given below.

%e A(1/7) = 0.241813310611551220817899738183178164198414429806944245427...

%e A(1/8) = 0.183769291658204237933331788389613939490616376081980660279...

%e A(1/9) = 0.152116846037417910191393667087080967002339480852805927801...

%e A(1/16) = 0.072296818077433380544156938042004242365657632791493646470...

%e A(1/25) = 0.043659522607225680741528652737350659693714843830834115952...

%e A(t) = 1/4 at t = 0.144593636154866761088313876084008484731315265582987...

%e A(t) = 1/5 at t = 0.130978567821677042224585958212051979081144531492502...

%o (PARI) {a(n) = my(A=[0,1]); for(i=1,n, A = concat(A,0);

%o A[#A] = polcoeff( x*Ser(A)/(1 - 2*Ser(A)) - subst(Ser(A),x, Ser(A)^2 ), #A) );A[n+1]}

%o for(n=1,30,print1(a(n),", "))

%K nonn

%O 1,2

%A _Paul D. Hanna_, May 13 2024