login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326083
Number of subsets of {1..n} containing all of their pairwise sums <= n.
92
1, 2, 3, 5, 7, 12, 16, 27, 37, 58, 80, 131, 171, 277, 380, 580, 785, 1250, 1655, 2616, 3516, 5344, 7257, 11353, 14931, 23204, 31379, 47511, 63778, 98681, 130503, 201357, 270038, 407429, 548090, 840171, 1110429, 1701872, 2284325, 3440337, 4601656
OFFSET
0,2
COMMENTS
The summands are allowed to be equal. The case where they must be distinct is A326080. If A007865 counts sum-free sets, this sequence counts sum-closed sets. This is different from sum-full sets (A093971).
From Gus Wiseman, Jul 08 2019: (Start)
Also the number of subsets of {1..n} containing no sum of any multiset of the elements. For example, the a(0) = 1 through a(6) = 16 subsets are:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {3,4}
{4,5} {3,5}
{3,4,5} {4,5}
{4,6}
{5,6}
{3,4,5}
{4,5,6}
(End)
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..100
FORMULA
For n > 0, a(n) = A103580(n) + 1.
EXAMPLE
The a(0) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {} {}
{1} {2} {2} {3} {3} {4}
{1,2} {3} {4} {4} {5}
{2,3} {2,4} {5} {6}
{1,2,3} {3,4} {2,4} {3,6}
{2,3,4} {3,4} {4,5}
{1,2,3,4} {3,5} {4,6}
{4,5} {5,6}
{2,4,5} {2,4,6}
{3,4,5} {3,4,6}
{2,3,4,5} {3,5,6}
{1,2,3,4,5} {4,5,6}
{2,4,5,6}
{3,4,5,6}
{2,3,4,5,6}
{1,2,3,4,5,6}
The a(7) = 27 subsets:
{} {4} {36} {246} {2467} {24567} {234567} {1234567}
{5} {45} {356} {3467} {34567}
{6} {46} {367} {3567}
{7} {47} {456} {4567}
{56} {457}
{57} {467}
{67} {567}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], SubsetQ[#, Select[Plus@@@Tuples[#, 2], #<=n&]]&]], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2019
STATUS
approved