login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051026
Number of primitive subsequences of {1, 2, ..., n}.
51
1, 2, 3, 5, 7, 13, 17, 33, 45, 73, 103, 205, 253, 505, 733, 1133, 1529, 3057, 3897, 7793, 10241, 16513, 24593, 49185, 59265, 109297, 163369, 262489, 355729, 711457, 879937, 1759873, 2360641, 3908545, 5858113, 10534337, 12701537, 25403073, 38090337, 63299265, 81044097, 162088193, 205482593, 410965185, 570487233, 855676353
OFFSET
0,2
COMMENTS
a(n) counts all subsequences of {1, ..., n} in which no term divides any other. If n is a prime a(n) = 2*a(n-1)-1 because for each subsequence s counted by a(n-1) two different subsequences are counted by a(n): s and s,n. There is only one exception: 1,n is not a primitive subsequence because 1 divides n. For all n>1: a(n) < 2*a(n-1). - Alois P. Heinz, Mar 07 2011
Maximal primitive subsets are counted by A326077. - Gus Wiseman, Jun 07 2019
REFERENCES
Blanchet-Sadri, Francine. Algorithmic combinatorics on partial words. Chapman & Hall/CRC, Boca Raton, FL, 2008. ii+385 pp. ISBN: 978-1-4200-6092-8; 1-4200-6092-9 MR2384993 (2009f:68142). See p. 320. - N. J. A. Sloane, Apr 06 2012
LINKS
Juliana Couras, Ricardo Jesus, and Tomás Oliveira e Silva, Table of n, a(n) for n = 0..800 (terms up to n=80 from Alois P. Heinz)
Marcel K. Goh and Jonah Saks, Alternating-sum statistics for certain sets of integers, arXiv:2206.12535 [math.CO], 2022.
Richárd Palincza, Counting type and extremal problems from Arithmetic Combinatorics, Ph. D. Thesis, Budapest Univ. Tech. Econ. (Hungary, 2024).
Eric Weisstein's World of Mathematics, Primitive Sequence
EXAMPLE
a(4) = 7, the primitive subsequences (including the empty sequence) are: (), (1), (2), (3), (4), (2,3), (3,4).
a(5) = 13 = 2*7-1, the primitive subsequences are: (), (5), (1), (2), (2,5), (3), (3,5), (4), (4,5), (2,3), (2,3,5), (3,4), (3,4,5).
From Gus Wiseman, Jun 07 2019: (Start)
The a(0) = 1 through a(5) = 13 primitive (pairwise indivisible) subsets:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{2} {2} {2} {2}
{3} {3} {3}
{2,3} {4} {4}
{2,3} {5}
{3,4} {2,3}
{2,5}
{3,4}
{3,5}
{4,5}
{2,3,5}
{3,4,5}
a(n) is also the number of subsets of {1..n} containing all of their pairwise products <= n as well as any quotients of divisible elements. For example, the a(0) = 1 through a(5) = 13 subsets are:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{1,2} {1,2} {1,3} {1,3}
{1,3} {1,4} {1,4}
{1,2,3} {1,2,4} {1,5}
{1,3,4} {1,2,4}
{1,2,3,4} {1,3,4}
{1,3,5}
{1,4,5}
{1,2,3,4}
{1,2,4,5}
{1,3,4,5}
{1,2,3,4,5}
Also the number of subsets of {1..n} containing all of their multiples <= n. For example, the a(0) = 1 through a(5) = 13 subsets are:
{} {} {} {} {} {}
{1} {2} {2} {3} {3}
{1,2} {3} {4} {4}
{2,3} {2,4} {5}
{1,2,3} {3,4} {2,4}
{2,3,4} {3,4}
{1,2,3,4} {3,5}
{4,5}
{2,3,4}
{2,4,5}
{3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
From Gus Wiseman, Mar 12 2024: (Start)
Also the number of subsets of {1..n} containing all divisors of the elements. For example, the a(0) = 1 through a(6) = 17 subsets are:
{} {} {} {} {} {}
{1} {1} {1} {1} {1}
{1,2} {1,2} {1,2} {1,2}
{1,3} {1,3} {1,3}
{1,2,3} {1,2,3} {1,5}
{1,2,4} {1,2,3}
{1,2,3,4} {1,2,4}
{1,2,5}
{1,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,2,3,4,5}
(End)
MAPLE
with(numtheory):
b:= proc(s) option remember; local n;
n:= max(s[]);
`if`(n<0, 1, b(s minus {n}) + b(s minus divisors(n)))
end:
bb:= n-> b({$2..n} minus divisors(n)):
sb:= proc(n) option remember; `if`(n<2, 0, bb(n) + sb(n-1)) end:
a:= n-> `if`(n=0, 1, `if`(isprime(n), 2*a(n-1)-1, 2+sb(n))):
seq(a(n), n=0..40); # Alois P. Heinz, Mar 07 2011
MATHEMATICA
b[s_] := b[s] = With[{n=Max[s]}, If[n < 0, 1, b[Complement[s, {n}]] + b[Complement[s, Divisors[n]]]]];
bb[n_] := b[Complement[Range[2, n], Divisors[n]]];
sb[n_] := sb[n] = If[n < 2, 0, bb[n] + sb[n-1]];
a[n_] := If[n == 0, 1, If[PrimeQ[n], 2a[n-1] - 1, 2 + sb[n]]]; Table[a[n], {n, 0, 37}]
(* Jean-François Alcover, Jul 27 2011, converted from Maple *)
Table[Length[Select[Subsets[Range[n]], SubsetQ[#, Select[Union@@Table[#*i, {i, n}], #<=n&]]&]], {n, 10}] (* Gus Wiseman, Jun 07 2019 *)
Table[Length[Select[Subsets[Range[n]], #==Union@@Divisors/@#&]], {n, 0, 10}] (* Gus Wiseman, Mar 12 2024 *)
KEYWORD
nonn,nice
EXTENSIONS
More terms from David Wasserman, May 02 2002
a(32)-a(37) from Donovan Johnson, Aug 11 2010
STATUS
approved