login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A046703 Multiplicative primes: product of digits is a prime. 9
2, 3, 5, 7, 13, 17, 31, 71, 113, 131, 151, 211, 311, 1117, 1151, 1171, 1511, 2111, 11113, 11117, 11131, 11171, 11311, 111121, 111211, 112111, 113111, 131111, 311111, 511111, 1111151, 1111211, 1111711, 1117111, 1171111, 11111117, 11111131, 11111171, 11111311, 11113111, 11131111 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Primes with one prime digit and all other digits are 1. The linked table includes probable primes. - Jens Kruse Andersen, Jul 21 2014

LINKS

Jens Kruse Andersen, Table of n, a(n) for n = 1..1000

MATHEMATICA

Select[Prime[Range[740000]], PrimeQ[Times@@IntegerDigits[#]]&] (* Harvey P. Dale, Oct 02 2011 *)

PROG

(PARI) f(n, b, d) = if(d, f(10*n+1, b, d-1); if(!b, forprime(q=2, 9, f(10*n+q, 1, d-1))), if(b && isprime(n), print1(n", ")))

for(d=1, 8, f(0, 0, d)) \\ f(0, 0, d) prints d-digit terms. Jens Kruse Andersen, Jul 21 2014

(PARI) From M. F. Hasler, Apr 23 2019: (Start)

select( is_A046703(n)=isprime(vecprod(digits(n)))&&ispseudoprime(n), [0..9999]) \\ This defines is_A046703(). In older PARI versions, vecprod=factorback.

next_A046703(n)={if( n>1, until( ispseudoprime(n), my(d=digits(n)); n=fromdigits( apply( t->if(t>1, nextprime(t+1), 1), d))+(d[1]>5)); n, 2)}

A046703_vec(N=99)=vector(N, i, t=next_A046703(if(i>1, t))) \\ (End)

CROSSREFS

Cf. A117835 ("noncomposite" variant), A007954 (product of digits), A028842 (product of digits is prime).

Sequence in context: A046732 A293663 A317688 * A118722 A051026 A028865

Adjacent sequences:  A046700 A046701 A046702 * A046704 A046705 A046706

KEYWORD

base,nonn

AUTHOR

Felice Russo

EXTENSIONS

Corrected by Harvey P. Dale, Oct 02 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 11:01 EDT 2019. Contains 326324 sequences. (Running on oeis4.)