login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326076
Number of subsets of {1..n} containing all of their integer products <= n.
20
1, 2, 4, 8, 12, 24, 44, 88, 152, 232, 444, 888, 1576, 3152, 6136, 11480, 17112, 34224, 63504, 127008, 232352, 442208, 876944, 1753888, 3138848, 4895328, 9739152, 18141840, 34044720, 68089440, 123846624, 247693248, 469397440, 924014144, 1845676384, 3469128224, 5182711584
OFFSET
0,2
COMMENTS
The strict case is A326081.
FORMULA
a(n) = 2*A326114(n) for n > 0. - Andrew Howroyd, Aug 30 2019
EXAMPLE
The a(0) = 1 through a(4) = 12 sets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {3}
{1,2} {3} {4}
{1,2} {1,3}
{1,3} {1,4}
{2,3} {2,4}
{1,2,3} {3,4}
{1,2,4}
{1,3,4}
{2,3,4}
{1,2,3,4}
The a(6) = 44 sets:
{} {1} {1,3} {1,2,4} {1,2,4,5} {1,2,3,4,6} {1,2,3,4,5,6}
{3} {1,4} {1,3,4} {1,2,4,6} {1,2,4,5,6}
{4} {1,5} {1,3,5} {1,3,4,5} {1,3,4,5,6}
{5} {1,6} {1,3,6} {1,3,4,6} {2,3,4,5,6}
{6} {2,4} {1,4,5} {1,3,5,6}
{3,4} {1,4,6} {1,4,5,6}
{3,5} {1,5,6} {2,3,4,6}
{3,6} {2,4,5} {2,4,5,6}
{4,5} {2,4,6} {3,4,5,6}
{4,6} {3,4,5}
{5,6} {3,4,6}
{3,5,6}
{4,5,6}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], SubsetQ[#, Select[Times@@@Tuples[#, 2], #<=n&]]&]], {n, 0, 10}]
PROG
(PARI)
a(n)={
my(lim=vector(n, k, sqrtint(k)));
my(accept(b, k)=for(i=2, lim[k], if(k%i ==0 && bittest(b, i) && bittest(b, k/i), return(0))); 1);
my(recurse(k, b)=
my(m=1);
for(j=max(2*k, n\2+1), min(2*k+1, n), if(accept(b, j), m*=2));
k++;
m*if(k > n\2, 1, self()(k, b + (1<<k)) + if(accept(b, k), self()(k, b)))
);
recurse(0, 0);
} \\ Andrew Howroyd, Aug 30 2019
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2019
EXTENSIONS
a(16)-a(30) from Andrew Howroyd, Aug 16 2019
Terms a(31) and beyond from Andrew Howroyd, Aug 30 2019
STATUS
approved