The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196724 Number of subsets of {1..n} (including empty set) such that the pairwise products of distinct elements are all distinct. 25
1, 2, 4, 8, 16, 32, 58, 116, 212, 416, 720, 1440, 2340, 4680, 7920, 13024, 23328, 46656, 74168, 148336, 229856, 371424, 615304, 1230608, 1780224, 3401568, 5589360, 9468504, 14397744, 28795488, 40312128, 80624256, 131388480, 206363168, 335814288, 521401536 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product is A325860(n). - Gus Wiseman, Jun 03 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..50
EXAMPLE
a(6) = 58: from the 2^6=64 subsets of {1,2,3,4,5,6} only 6 do not have all the pairwise products of elements distinct: {1,2,3,6}, {2,3,4,6}, {1,2,3,4,6}, {1,2,3,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}.
MAPLE
b:= proc(n, s) local sn, m;
m:= nops(s);
sn:= [s[], n];
`if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq(
sn[i]*sn[j], j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))
end:
a:= proc(n) option remember;
b(n-1, [n]) +`if`(n=0, 0, a(n-1))
end:
seq(a(n), n=0..20);
MATHEMATICA
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] * sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]]; a[n_] := a[n] = b[n - 1, {n}] + If[n == 0, 0, a[n - 1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2017, translated from Maple *)
Table[Length[Select[Subsets[Range[n]], UnsameQ@@Times@@@Subsets[#, {2}]&]], {n, 0, 10}] (* Gus Wiseman, Jun 03 2019 *)
CROSSREFS
The subset case is A196724 (this sequence).
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.
Sequence in context: A245392 A115909 A254940 * A056644 A007813 A289657
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 06 2011
EXTENSIONS
Name edited by Gus Wiseman, Jun 03 2019
a(33)-a(35) from Fausto A. C. Cariboni, Oct 05 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 18:34 EDT 2024. Contains 372765 sequences. (Running on oeis4.)