login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196724 Number of subsets of {1..n} (including empty set) such that the pairwise products of distinct elements are all distinct. 25
1, 2, 4, 8, 16, 32, 58, 116, 212, 416, 720, 1440, 2340, 4680, 7920, 13024, 23328, 46656, 74168, 148336, 229856, 371424, 615304, 1230608, 1780224, 3401568, 5589360, 9468504, 14397744, 28795488, 40312128, 80624256, 131388480 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different product is A325860(n). - Gus Wiseman, Jun 03 2019

LINKS

Table of n, a(n) for n=0..32.

EXAMPLE

a(6) = 58: from the 2^6=64 subsets of {1,2,3,4,5,6} only 6 do not have all the pairwise products of elements distinct: {1,2,3,6}, {2,3,4,6}, {1,2,3,4,6}, {1,2,3,5,6}, {2,3,4,5,6}, {1,2,3,4,5,6}.

MAPLE

b:= proc(n, s) local sn, m;

      m:= nops(s);

      sn:= [s[], n];

      `if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq(

       sn[i]*sn[j], j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))

    end:

a:= proc(n) option remember;

      b(n-1, [n]) +`if`(n=0, 0, a(n-1))

    end:

seq(a(n), n=0..20);

MATHEMATICA

b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n < 1, 1, b[n - 1, s] + If[m*(m + 1)/2 == Length[Union[Flatten[Table[ sn[[i]] * sn[[j]], {i, 1, m}, {j, i + 1, m + 1}]]]], b[n - 1, sn], 0]]]; a[n_] := a[n] = b[n - 1, {n}] + If[n == 0, 0, a[n - 1]]; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Jan 31 2017, translated from Maple *)

Table[Length[Select[Subsets[Range[n]], UnsameQ@@Times@@@Subsets[#, {2}]&]], {n, 0, 10}] (* Gus Wiseman, Jun 03 2019 *)

CROSSREFS

Cf. A143823, A196719, A196720, A196721, A196722, A196723.

The subset case is A196724 (this sequence).

The maximal case is A325859.

The integer partition case is A325856.

The strict integer partition case is A325855.

Heinz numbers of the counterexamples are given by A325993.

Cf. A292886, A293627, A325860, A325861.

Sequence in context: A245392 A115909 A254940 * A056644 A007813 A289657

Adjacent sequences:  A196721 A196722 A196723 * A196725 A196726 A196727

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Oct 06 2011

EXTENSIONS

Name edited by Gus Wiseman, Jun 03 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 5 06:13 EDT 2020. Contains 333238 sequences. (Running on oeis4.)