OFFSET
0,2
LINKS
Ray Chandler, Table of n, a(n) for n = 0..1000
Julien Cassaigne, J. Karhumäki, S. Puzynina, M. A. Whiteland, k-Abelian Equivalence and Rationality, in International Conference on Developments in Language Theory DLT 2016: Developments in Language Theory pp 77-88, Lecture Notes in Computer Science book series (LNCS, volume 9840).
Julien Cassaigne, Juhani Karhumaki, Svetlana Puzynina, Markus A. Whiteland, k-Abelian Equivalence and Rationality, Fundamenta Informaticae 154 (2017) 1-30, DOI 10.3233/FI-2017-1531.
Juhani Karhumäki, Markus A. Whiteland, Regularity of k-Abelian Equivalence Classes of Fixed Cardinality, Adventures Between Lower Bounds and Higher Altitudes, Lecture Notes in Computer Science, Vol. 11011, Springer, Cham, 49-62.
Index entries for linear recurrences with constant coefficients, signature (3, -2, -1, 0, 1, 2, -3, 1).
FORMULA
See Maple code.
G.f.: (1 - x + x^3 + 2*x^4 + 3*x^5 + x^7 - x^8 + 2*x^9) / ((1 - x)^5*(1 + x)*(1 + x + x^2)). - Colin Barker, Jul 23 2017
MAPLE
# This is for n >= 2:
P32:=proc(n) local t1, c, w; c:=exp(Pi*I/3); w:=c^2;
t1:=n^4/18-5*n^3/18+65*n^2/36-23*n/6-(-1)^n/8
+(2/27)*(w^n/c+c/w^n)+1307/216;
round(Re(evalf(simplify(t1))));
end;
[seq(P32(n), n=2..56)];
MATHEMATICA
CoefficientList[Series[(1 - x + x^3 + 2 x^4 + 3 x^5 + x^7 - x^8 + 2 x^9)/((1 - x)^5*(1 + x) (1 + x + x^2)), {x, 0, 47}], x] (* Michael De Vlieger, Nov 29 2018 *)
LinearRecurrence[{3, -2, -1, 0, 1, 2, -3, 1}, {1, 2, 4, 8, 16, 32, 60, 106, 176, 280}, 50] (* Harvey P. Dale, Oct 06 2024 *)
PROG
(PARI) Vec((1 - x + x^3 + 2*x^4 + 3*x^5 + x^7 - x^8 + 2*x^9) / ((1 - x)^5*(1 + x)*(1 + x + x^2)) + O(x^50)) \\ Colin Barker, Jul 24 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 22 2017
STATUS
approved