login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289658
Number of 2-Abelian equivalence classes of words of length n over an alphabet of size 3.
2
1, 3, 9, 27, 75, 186, 414, 840, 1578, 2784, 4662, 7476, 11556, 17313, 25245, 35955, 50157, 68697, 92559, 122889, 161001, 208404, 266808, 338154, 424620, 528654, 652980, 800634, 974970, 1179699, 1418895, 1697037, 2019015, 2390175, 2816325, 3303783, 3859383, 4490526, 5205186, 6011964, 6920094
OFFSET
0,2
LINKS
Julien Cassaigne, J. Karhumäki, S. Puzynina, M. A. Whiteland, k-Abelian Equivalence and Rationality, in International Conference on Developments in Language Theory DLT 2016: Developments in Language Theory, pp. 77-88, Lecture Notes in Computer Science book series (LNCS, volume 9840).
Julien Cassaigne, Juhani Karhumaki, Svetlana Puzynina, Markus A. Whiteland, k-Abelian Equivalence and Rationality, Fundamenta Informaticae 154 (2017) 1-30, DOI 10.3233/FI-2017-1531.
Juhani Karhumäki, Markus A. Whiteland, Regularity of k-Abelian Equivalence Classes of Fixed Cardinality, Adventures Between Lower Bounds and Higher Altitudes, Lecture Notes in Computer Science, Vol. 11011, Springer, Cham, 49-62.
FORMULA
See Maple code.
From Colin Barker, Jul 23 2017: (Start)
G.f.: (1 - 2*x + 2*x^2 + 6*x^3 - 2*x^4 - x^5 - 2*x^7 - x^8 + 2*x^9) / ((1 - x)^7*(1 + x)^2).
a(n) = (2*n^6 + 42*n^5 + 335*n^4 - 1140*n^3 + 5828*n^2 - 4752*n + 5760) / 1920 for n>0 and even.
a(n) = (2*n^6 + 42*n^5 + 335*n^4 - 1140*n^3 + 5828*n^2 - 4662*n + 5355) / 1920 for n odd.
(End)
MAPLE
# For n >= 1:
P23:=proc(n) local t1;
t1:=n^6/960+7*n^5/320+67*n^4/384-19*n^3/32+1457*n^2/480
-(1569/640+3*(-1)^n/128)*n+741/256+27*(-1)^n/256;
simplify(t1);
end;
[seq(P23(n), n=1..46)];
MATHEMATICA
CoefficientList[Series[(1 - 2 x + 2 x^2 + 6 x^3 - 2 x^4 - x^5 - 2 x^7 - x^8 + 2 x^9)/((1 - x)^7*(1 + x)^2), {x, 0, 40}], x] (* Michael De Vlieger, Nov 29 2018 *)
LinearRecurrence[{5, -8, 0, 14, -14, 0, 8, -5, 1}, {1, 3, 9, 27, 75, 186, 414, 840, 1578, 2784}, 50] (* Harvey P. Dale, Aug 28 2019 *)
PROG
(PARI) Vec((1 - 2*x + 2*x^2 + 6*x^3 - 2*x^4 - x^5 - 2*x^7 - x^8 + 2*x^9) / ((1 - x)^7*(1 + x)^2) + O(x^50)) \\ Colin Barker, Jul 23 2017
CROSSREFS
Cf. A289657.
Sequence in context: A206604 A084707 A193703 * A180238 A289693 A269684
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 22 2017
STATUS
approved