login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289693
The number of partitions of [n] with exactly 3 blocks without peaks.
2
0, 0, 1, 3, 9, 27, 75, 197, 503, 1263, 3132, 7695, 18784, 45649, 110585, 267276, 644907, 1554208, 3742321, 9005265, 21659603, 52078400, 125186565, 300870586, 723010749, 1737273406, 4174084259, 10028409724, 24092769583, 57880137331
OFFSET
1,4
LINKS
T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Table 1.
FORMULA
From Colin Barker, Nov 07 2017: (Start)
G.f.: x^3*(1 - x + x^2)*(1 - 2*x + 3*x^2 - x^3 + x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 - 3*x + 3*x^2 - 4*x^3 + x^4 - x^5)).
a(n) = 6*a(n-1) - 15*a(n-2) + 24*a(n-3) - 29*a(n-4) + 25*a(n-5) - 17*a(n-6) + 9*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)
MAPLE
with(orthopoly) :
nmax := 10:
tpr := 1+x^2/2 :
k := 3:
g := x^k ;
for j from 1 to k do
if j> 1 then
g := g*( U(j-1, tpr)-(1+x)*U(j-2, tpr)) / ((1-x)*U(j-1, tpr)-U(j-2, tpr)) ;
else
# note that U(-1, .)=0, U(0, .)=1
g := g* U(j-1, tpr) / ((1-x)*U(j-1, tpr)) ;
end if;
end do:
simplify(%) ;
taylor(g, x=0, nmax+1) ;
gfun[seriestolist](%) ; # R. J. Mathar, Mar 11 2021
CROSSREFS
Sequence in context: A193703 A289658 A180238 * A269684 A330079 A361423
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 09 2017
STATUS
approved