|
|
A289693
|
|
The number of partitions of [n] with exactly 3 blocks without peaks.
|
|
2
|
|
|
0, 0, 1, 3, 9, 27, 75, 197, 503, 1263, 3132, 7695, 18784, 45649, 110585, 267276, 644907, 1554208, 3742321, 9005265, 21659603, 52078400, 125186565, 300870586, 723010749, 1737273406, 4174084259, 10028409724, 24092769583, 57880137331
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x^3*(1 - x + x^2)*(1 - 2*x + 3*x^2 - x^3 + x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 - 3*x + 3*x^2 - 4*x^3 + x^4 - x^5)).
a(n) = 6*a(n-1) - 15*a(n-2) + 24*a(n-3) - 29*a(n-4) + 25*a(n-5) - 17*a(n-6) + 9*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)
|
|
MAPLE
|
with(orthopoly) :
nmax := 10:
tpr := 1+x^2/2 :
k := 3:
g := x^k ;
for j from 1 to k do
if j> 1 then
g := g*( U(j-1, tpr)-(1+x)*U(j-2, tpr)) / ((1-x)*U(j-1, tpr)-U(j-2, tpr)) ;
else
# note that U(-1, .)=0, U(0, .)=1
g := g* U(j-1, tpr) / ((1-x)*U(j-1, tpr)) ;
end if;
end do:
simplify(%) ;
taylor(g, x=0, nmax+1) ;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|