login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A289693 The number of partitions of [n] with exactly 3 blocks without peaks. 2
0, 0, 1, 3, 9, 27, 75, 197, 503, 1263, 3132, 7695, 18784, 45649, 110585, 267276, 644907, 1554208, 3742321, 9005265, 21659603, 52078400, 125186565, 300870586, 723010749, 1737273406, 4174084259, 10028409724, 24092769583, 57880137331 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,4
LINKS
T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Table 1.
FORMULA
From Colin Barker, Nov 07 2017: (Start)
G.f.: x^3*(1 - x + x^2)*(1 - 2*x + 3*x^2 - x^3 + x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 - 3*x + 3*x^2 - 4*x^3 + x^4 - x^5)).
a(n) = 6*a(n-1) - 15*a(n-2) + 24*a(n-3) - 29*a(n-4) + 25*a(n-5) - 17*a(n-6) + 9*a(n-7) - 3*a(n-8) + a(n-9) for n>9.
(End)
MAPLE
with(orthopoly) :
nmax := 10:
tpr := 1+x^2/2 :
k := 3:
g := x^k ;
for j from 1 to k do
if j> 1 then
g := g*( U(j-1, tpr)-(1+x)*U(j-2, tpr)) / ((1-x)*U(j-1, tpr)-U(j-2, tpr)) ;
else
# note that U(-1, .)=0, U(0, .)=1
g := g* U(j-1, tpr) / ((1-x)*U(j-1, tpr)) ;
end if;
end do:
simplify(%) ;
taylor(g, x=0, nmax+1) ;
gfun[seriestolist](%) ; # R. J. Mathar, Mar 11 2021
CROSSREFS
Sequence in context: A193703 A289658 A180238 * A269684 A330079 A361423
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jul 09 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 18:41 EST 2023. Contains 367614 sequences. (Running on oeis4.)