login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The number of partitions of [n] with exactly 3 blocks without peaks.
2

%I #13 Jul 18 2023 10:38:09

%S 0,0,1,3,9,27,75,197,503,1263,3132,7695,18784,45649,110585,267276,

%T 644907,1554208,3742321,9005265,21659603,52078400,125186565,300870586,

%U 723010749,1737273406,4174084259,10028409724,24092769583,57880137331

%N The number of partitions of [n] with exactly 3 blocks without peaks.

%H T. Mansour and M. Shattuck, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Shattuck/shattuck3.html">Counting Peaks and Valleys in a Partition of a Set</a>, J. Int. Seq. 13 (2010), 10.6.8, Table 1.

%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,24,-29,25,-17,9,-3,1).

%F From _Colin Barker_, Nov 07 2017: (Start)

%F G.f.: x^3*(1 - x + x^2)*(1 - 2*x + 3*x^2 - x^3 + x^4) / ((1 - x)*(1 - 2*x + x^2 - x^3)*(1 - 3*x + 3*x^2 - 4*x^3 + x^4 - x^5)).

%F a(n) = 6*a(n-1) - 15*a(n-2) + 24*a(n-3) - 29*a(n-4) + 25*a(n-5) - 17*a(n-6) + 9*a(n-7) - 3*a(n-8) + a(n-9) for n>9.

%F (End)

%p with(orthopoly) :

%p nmax := 10:

%p tpr := 1+x^2/2 :

%p k := 3:

%p g := x^k ;

%p for j from 1 to k do

%p if j> 1 then

%p g := g*( U(j-1,tpr)-(1+x)*U(j-2,tpr)) / ((1-x)*U(j-1,tpr)-U(j-2,tpr)) ;

%p else

%p # note that U(-1,.)=0, U(0,.)=1

%p g := g* U(j-1,tpr) / ((1-x)*U(j-1,tpr)) ;

%p end if;

%p end do:

%p simplify(%) ;

%p taylor(g,x=0,nmax+1) ;

%p gfun[seriestolist](%) ; # _R. J. Mathar_, Mar 11 2021

%Y Cf. A289692, A289694.

%K nonn

%O 1,4

%A _R. J. Mathar_, Jul 09 2017