login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084707
a(n) = 3*a(n-1) - 3*a(n-3) + a(n-4) for n > 3, with a(0) = 1, a(1) = 3, a(2) = 9, a(3) = 27.
2
1, 3, 9, 27, 73, 195, 513, 1347, 3529, 9243, 24201, 63363, 165889, 434307, 1137033, 2976795, 7793353, 20403267, 53416449, 139846083, 366121801, 958519323, 2509436169, 6569789187, 17199931393, 45030004995, 117890083593, 308640245787, 808030653769
OFFSET
0,2
COMMENTS
Define f(x, y) := 9 - x - 3*y + x^2 - 3*x*y + y^2. Then f(x, y) = f(-4-y, -4-x). All of the integer solutions of 0 = f(x, y) with x>=0 are given by x = a(2*n) and y = a(2*n+1) for all n in Z. - Michael Somos, Aug 19 2023
LINKS
J. Hietarinta and C.-M. Viallet, Singularity confinement and chaos in discrete systems, Physical Review Letters 81 (1998), pp. 326-328.
FORMULA
G.f.: (1+3*x^3)/(1-3*x+3*x^3-x^4). - Harvey P. Dale, Mar 14 2011
a(n) = (8*LucasL(2*n) - (-1)^n - 10)/5. - G. C. Greubel, Apr 15 2023
a(n) = a(-n) = 4 + 2*a(n-1) + 2*a(n-2) - a(n-3) for all n in Z. - Michael Somos, Aug 19 2023
EXAMPLE
G.f. = 1 + 3*x + 9*x^2 + 27*x^3 + 73*x^4 + 195*x^5 + 513*x^6 + ... - Michael Somos, Aug 19 2023
MAPLE
a:=proc(n) option remember; if n=0 then 1 elif n=1 then 3 elif n=2 then 9 elif n=3 then 27 else 3*a(n-1)-3*a(n-3)+a(n-4); fi; end: seq(a(n), n=0..40); # Wesley Ivan Hurt, Aug 15 2016
MATHEMATICA
a[n_]:=a[n]=3a[n-1] -3a[n-3] +a[n-4]; a[0]=1; a[1]=3; a[2]=9; a[3]=27;
Table[ a[n], {n, 0, 27}]
Transpose[NestList[Join[Rest[#], ListCorrelate[{1, -3, 0, 3}, #]]&, {1, 3, 9, 27}, 30]][[1]]
CoefficientList[Series[(1+3 x^3)/(1-3 x+3 x^3-x^4), {x, 0, 30}], x] (* Harvey P. Dale, Mar 14 2011 *)
a[ n_] := Floor[(LucasL[2*n] - 1)*8/5]; (* Michael Somos, Aug 19 2023 *)
PROG
(Magma) A084707:=[1, 3, 9, 27]; [n le 4 select A084707[n] else 3*Self(n-1)-3*Self(n-3)+Self(n-4): n in [1..30]]; // Wesley Ivan Hurt, Aug 15 2016
(Magma) [(8*Lucas(2*n) -(-1)^n)/5 -2: n in [0..40]]; // G. C. Greubel, Apr 15 2023
(SageMath) [(8*lucas_number2(2*n, 1, -1) -(-1)^n)/5 -2 for n in range(41)] # G. C. Greubel, Apr 15 2023
(PARI) {a(n) = my(w=quadgen(5)); (real((1+w)^n*(2+w))-1)*8\5}; /* Michael Somos, Aug 19 2023 */
CROSSREFS
Sequence in context: A348555 A042938 A206604 * A193703 A289658 A180238
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 06 2003
EXTENSIONS
More terms from Ray Chandler, Jul 07 2003
STATUS
approved