login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206604
Number of integers in the smallest interval containing both minimal and maximal possible apex values of an addition triangle whose base is a permutation of n+1 consecutive integers.
2
1, 1, 3, 9, 27, 73, 189, 465, 1115, 2601, 5973, 13489, 30149, 66641, 146233, 318369, 689403, 1484137, 3181797, 6790641, 14445101, 30617841, 64724553, 136426849, 286926757, 601999633, 1260707529, 2634831585, 5497982025, 11452601761, 23823827825, 49484904257
OFFSET
0,3
COMMENTS
For n>0 the base row of the addition triangle may contain a permutation of any set {b+k, k=0..n} where b is an integer or a half-integer. Each number in a higher row is the sum of the two numbers directly below it. Rows above the base row contain only integers.
a(n) = 3 (mod 4) if n = 2^m with m > 0 and a(n) = 1 (mod 4) else.
LINKS
FORMULA
a(n) = 1 + Sum_{k=0..n} C(n,floor(k/2)) * (2*k-n).
G.f.: 1/(1-x) + (1-sqrt(1-4*x^2)) / (2*x-1)^2.
a(n) = 1 + 2*A206603(n).
a(n) = 1 + A189390(n)-A189391(n).
a(n) ~ n*2^n * (1-2*sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 15 2014
EXAMPLE
a(3) = 9: max: 20 min: 12
9 11 7 5
3 6 5 5 2 3
1/2 5/2 7/2 3/2 7/2 3/2 1/2 5/2
[12, 13, ..., 20] contains 20-12+1 = 9 integers.
a(4) = 27: max: 13 min: -13
5 8 -5 -8
0 5 3 0 -5 -3
-2 2 3 0 2 -2 -3 0
-2 0 2 1 -1 2 0 -2 -1 1
[-13, -12, ..., 13] contains 13-(-13)+1 = 27 integers.
MAPLE
a:= n-> 1 +add(binomial(n, floor(k/2))*(2*k-n), k=0..n):
seq(a(n), n=0..40);
# second Maple program
a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),
(3*n^2-6*n+6+(2*n^2-6)*a(n-1)+4*(n-1)*(n-4)*a(n-2)
-8*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Apr 25 2013
MATHEMATICA
a = DifferenceRoot[Function[{y, n}, {(-2n^2 - 12n - 12) y[n+2] - 3n^2 + 8(n+1)(n+2) y[n] - 4(n-1)(n+2) y[n+1] + (n+1)(n+3) y[n+3] - 12n - 15 == 0, y[0] == 1, y[1] == 1, y[2] == 3, y[3] == 9}]];
Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)
PROG
(PARI) a(n) = 1 + sum(k=0, n, binomial(n, k\2)*(2*k-n)); \\ Michel Marcus, Dec 20 2020
(Python)
from math import comb
def A206604(n): return sum(comb(n, k>>1)*((k<<1)-n) for k in range(n+1))+1 # Chai Wah Wu, Oct 28 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 10 2012
STATUS
approved