login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of integers in the smallest interval containing both minimal and maximal possible apex values of an addition triangle whose base is a permutation of n+1 consecutive integers.
2

%I #32 Oct 28 2024 12:56:25

%S 1,1,3,9,27,73,189,465,1115,2601,5973,13489,30149,66641,146233,318369,

%T 689403,1484137,3181797,6790641,14445101,30617841,64724553,136426849,

%U 286926757,601999633,1260707529,2634831585,5497982025,11452601761,23823827825,49484904257

%N Number of integers in the smallest interval containing both minimal and maximal possible apex values of an addition triangle whose base is a permutation of n+1 consecutive integers.

%C For n>0 the base row of the addition triangle may contain a permutation of any set {b+k, k=0..n} where b is an integer or a half-integer. Each number in a higher row is the sum of the two numbers directly below it. Rows above the base row contain only integers.

%C a(n) = 3 (mod 4) if n = 2^m with m > 0 and a(n) = 1 (mod 4) else.

%H Alois P. Heinz, <a href="/A206604/b206604.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = 1 + Sum_{k=0..n} C(n,floor(k/2)) * (2*k-n).

%F G.f.: 1/(1-x) + (1-sqrt(1-4*x^2)) / (2*x-1)^2.

%F a(n) = 1 + 2*A206603(n).

%F a(n) = 1 + A189390(n)-A189391(n).

%F a(n) ~ n*2^n * (1-2*sqrt(2)/sqrt(Pi*n)). - _Vaclav Kotesovec_, Mar 15 2014

%e a(3) = 9: max: 20 min: 12

%e 9 11 7 5

%e 3 6 5 5 2 3

%e 1/2 5/2 7/2 3/2 7/2 3/2 1/2 5/2

%e [12, 13, ..., 20] contains 20-12+1 = 9 integers.

%e a(4) = 27: max: 13 min: -13

%e 5 8 -5 -8

%e 0 5 3 0 -5 -3

%e -2 2 3 0 2 -2 -3 0

%e -2 0 2 1 -1 2 0 -2 -1 1

%e [-13, -12, ..., 13] contains 13-(-13)+1 = 27 integers.

%p a:= n-> 1 +add(binomial(n, floor(k/2))*(2*k-n), k=0..n):

%p seq(a(n), n=0..40);

%p # second Maple program

%p a:= proc(n) option remember; `if`(n<3, 1+n*(n-1),

%p (3*n^2-6*n+6+(2*n^2-6)*a(n-1)+4*(n-1)*(n-4)*a(n-2)

%p -8*(n-1)*(n-2)*a(n-3)) / (n*(n-2)))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Apr 25 2013

%t a = DifferenceRoot[Function[{y, n}, {(-2n^2 - 12n - 12) y[n+2] - 3n^2 + 8(n+1)(n+2) y[n] - 4(n-1)(n+2) y[n+1] + (n+1)(n+3) y[n+3] - 12n - 15 == 0, y[0] == 1, y[1] == 1, y[2] == 3, y[3] == 9}]];

%t Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ *)

%o (PARI) a(n) = 1 + sum(k=0, n, binomial(n, k\2)*(2*k-n)); \\ _Michel Marcus_, Dec 20 2020

%o (Python)

%o from math import comb

%o def A206604(n): return sum(comb(n,k>>1)*((k<<1)-n) for k in range(n+1))+1 # _Chai Wah Wu_, Oct 28 2024

%Y Cf. A189390, A189391, A206603.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Feb 10 2012