OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
390: {1,2,3,6}
780: {1,1,2,3,6}
798: {1,2,4,8}
1170: {1,2,2,3,6}
1365: {2,3,4,6}
1560: {1,1,1,2,3,6}
1596: {1,1,2,4,8}
1914: {1,2,5,10}
1950: {1,2,3,3,6}
2340: {1,1,2,2,3,6}
2394: {1,2,2,4,8}
2590: {1,3,4,12}
2730: {1,2,3,4,6}
2886: {1,2,6,12}
3120: {1,1,1,1,2,3,6}
3192: {1,1,1,2,4,8}
3510: {1,2,2,2,3,6}
3828: {1,1,2,5,10}
3900: {1,1,2,3,3,6}
3990: {1,2,3,4,8}
MATHEMATICA
Select[Range[1000], !UnsameQ@@Times@@@Subsets[PrimePi/@First/@FactorInteger[#], {2}]&]
CROSSREFS
The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 02 2019
STATUS
approved