login
A325992
Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference.
8
30, 60, 90, 105, 110, 120, 150, 180, 210, 220, 238, 240, 270, 273, 300, 315, 330, 360, 385, 390, 420, 440, 450, 462, 476, 480, 506, 510, 525, 540, 546, 550, 570, 600, 627, 630, 660, 690, 714, 720, 735, 750, 770, 780, 806, 810, 819, 840, 858, 870, 880, 900, 910
OFFSET
1,1
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
EXAMPLE
The sequence of terms together with their prime indices begins:
30: {1,2,3}
60: {1,1,2,3}
90: {1,2,2,3}
105: {2,3,4}
110: {1,3,5}
120: {1,1,1,2,3}
150: {1,2,3,3}
180: {1,1,2,2,3}
210: {1,2,3,4}
220: {1,1,3,5}
238: {1,4,7}
240: {1,1,1,1,2,3}
270: {1,2,2,2,3}
273: {2,4,6}
300: {1,1,2,3,3}
315: {2,2,3,4}
330: {1,2,3,5}
360: {1,1,1,2,2,3}
385: {3,4,5}
390: {1,2,3,6}
MATHEMATICA
Select[Range[1000], !UnsameQ@@Subtract@@@Subsets[PrimePi/@First/@FactorInteger[#], {2}]&]
CROSSREFS
The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.
Sequence in context: A073461 A377259 A222618 * A056954 A378885 A377952
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 02 2019
STATUS
approved