login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A069477
a(n) = 60*n^2 + 180*n + 150.
3
390, 750, 1230, 1830, 2550, 3390, 4350, 5430, 6630, 7950, 9390, 10950, 12630, 14430, 16350, 18390, 20550, 22830, 25230, 27750, 30390, 33150, 36030, 39030, 42150, 45390, 48750, 52230, 55830, 59550, 63390, 67350, 71430, 75630, 79950, 84390, 88950, 93630, 98430
OFFSET
1,1
COMMENTS
First differences of A068236, successive differences of (n+1)^5 - n^5 (A022521).
FORMULA
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=390, a(2)=750, a(3)=1230. - Harvey P. Dale, Apr 06 2012
Sum_{n>=1} 1/a(n) = (Pi/60)*tanh(Pi/2) - 1/25. - Amiram Eldar, Jan 27 2022
MATHEMATICA
Table[30 (2 n^2 + 6 n + 5), {n, 1, 100}] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
LinearRecurrence[{3, -3, 1}, {390, 750, 1230}, 40] (* Harvey P. Dale, Apr 06 2012 *)
PROG
(Magma) [30*(2*n^2 + 6*n + 5): n in [1..40]]; // Vincenzo Librandi, Nov 23 2011
(PARI) a(n)=60*n^2+180*n+150 \\ Charles R Greathouse IV, Nov 23 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002
STATUS
approved