login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 60*n^2 + 180*n + 150.
3

%I #22 Jan 27 2022 03:05:06

%S 390,750,1230,1830,2550,3390,4350,5430,6630,7950,9390,10950,12630,

%T 14430,16350,18390,20550,22830,25230,27750,30390,33150,36030,39030,

%U 42150,45390,48750,52230,55830,59550,63390,67350,71430,75630,79950,84390,88950,93630,98430

%N a(n) = 60*n^2 + 180*n + 150.

%C First differences of A068236, successive differences of (n+1)^5 - n^5 (A022521).

%H Vincenzo Librandi, <a href="/A069477/b069477.txt">Table of n, a(n) for n = 1..10000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=390, a(2)=750, a(3)=1230. - _Harvey P. Dale_, Apr 06 2012

%F Sum_{n>=1} 1/a(n) = (Pi/60)*tanh(Pi/2) - 1/25. - _Amiram Eldar_, Jan 27 2022

%t Table[30 (2 n^2 + 6 n + 5), {n, 1, 100}] (* _Vladimir Joseph Stephan Orlovsky_, Jun 19 2011 *)

%t LinearRecurrence[{3,-3,1},{390,750,1230},40] (* _Harvey P. Dale_, Apr 06 2012 *)

%o (Magma) [30*(2*n^2 + 6*n + 5): n in [1..40]]; // _Vincenzo Librandi_, Nov 23 2011

%o (PARI) a(n)=60*n^2+180*n+150 \\ _Charles R Greathouse IV_, Nov 23 2011

%Y Cf. A101096, A022521, A068236, A069477.

%K nonn,easy

%O 1,1

%A Eli McGowan (ejmcgowa(AT)mail.lakeheadu.ca), Apr 11 2002