The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A196722 Number of subsets of {1..n} (including empty set) such that the pairwise LCMs of elements are not distinct. 6
1, 2, 4, 7, 11, 16, 23, 30, 38, 47, 58, 69, 83, 96, 111, 128, 144, 161, 181, 200, 223, 246, 269, 292, 319, 344, 371, 398, 429, 458, 496, 527, 559, 594, 629, 668, 708, 745, 784, 825, 870, 911, 962, 1005, 1052, 1102, 1149, 1196, 1248, 1297, 1349, 1402, 1457, 1510 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
All pairwise LCMs of each subset are equal if there are any.
LINKS
EXAMPLE
A(6) = 23: {}, {1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}, {2,3,6}.
MAPLE
b:= proc(n, s) local sn, m;
m:= nops(s);
sn:= [s[], n];
`if`(n<1, 1, b(n-1, s) +`if`(1 >= nops(({seq(seq(
ilcm(sn[i], sn[j]), j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))
end:
a:= proc(n) option remember;
b(n-1, [n]) +`if`(n=0, 0, a(n-1))
end:
seq(a(n), n=0..50);
MATHEMATICA
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n<1, 1, b[n-1, s] + If[1 >= Length @ Union @ Flatten @ Table[ LCM[ sn[[i]], sn[[j]]], {i, 1, m}, {j, i+1, m+1}], b[n-1, sn], 0]]];
a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Apr 12 2017, translated from Maple *)
CROSSREFS
Sequence in context: A365698 A133523 A114805 * A181120 A000601 A062433
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 05 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 30 03:30 EDT 2024. Contains 372957 sequences. (Running on oeis4.)