OFFSET
0,2
COMMENTS
The number of subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum is A143823(n).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..110
EXAMPLE
a(4) = 15: {}, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}.
MAPLE
b:= proc(n, s) local sn, m;
m:= nops(s);
sn:= [s[], n];
`if`(n<1, 1, b(n-1, s) +`if`(m*(m+1)/2 = nops(({seq(seq(
sn[i]+sn[j], j=i+1..m+1), i=1..m)})), b(n-1, sn), 0))
end:
a:= proc(n) option remember;
b(n-1, [n]) +`if`(n=0, 0, a(n-1))
end:
seq(a(n), n=0..20);
MATHEMATICA
b[n_, s_] := b[n, s] = Module[{sn, m}, m = Length[s]; sn = Append[s, n]; If[n<1, 1, b[n-1, s] + If[m*(m+1)/2 == Length[ Union[ Flatten[ Table[ sn[[i]] + sn[[j]], {i, 1, m}, {j, i+1, m+1}]]]], b[n-1, sn], 0]]];
a[n_] := a[n] = b[n-1, {n}] + If[n == 0, 0, a[n-1]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Jan 31 2017, translated from Maple *)
Table[Length[Select[Subsets[Range[n]], UnsameQ@@Plus@@@Subsets[#, {2}]&]], {n, 0, 10}] (* Gus Wiseman, Jun 03 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Oct 06 2011
EXTENSIONS
Edited by Gus Wiseman, Jun 03 2019
STATUS
approved