login
A326085
E.g.f.: Sum_{n>=0} 3^(n^2) * (1+x)^(3^n) * x^n / n!.
1
1, 4, 99, 21924, 45207549, 864861114348, 151334173143255375, 240066309264838323117084, 3437872832425973181485795041113, 443629285029172409524181790790692095604, 515464807018375729400140781858676274403447441691, 5391365666991000164547212259503680126841305476860172028212
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 3 and p = log(1+x)/x, r = x.
FORMULA
E.g.f.: Sum_{n>=0} (3^n*x + log(1+x))^n / n!.
E.g.f.: Sum_{n>=0} log( exp(3^n*x) * (1+x) )^n / n!.
E.g.f.: Sum_{n>=0} 3^(n^2) * (1+x)^(3^n) * x^n / n!.
a(n) = n! * Sum_{k=0..n} 3^(k^2) * binomial(3^k,n-k) / k!.
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 99*x^2/2! + 21924*x^3/3! + 45207549*x^4/4! + 864861114348*x^5/5! + 151334173143255375*x^6/6! + 240066309264838323117084*x^7/7! + ...
such that
A(x) = 1 + 3*(1+x)^3*x + 3^4*(1+x)^9*x^2/2! + 3^9*(1+x)^27*x^3/3! + 3^16*(1+x)^81*x^4/4! + 3^25*(1+x)^243*x^5/5! + 3^36*(1+x)^729*x^6/6! + ...
also
A(x) = 1 + (3*x + log(1+x)) + (3^2*x + log(1+x))^2/2! + (3^3*x + log(1+x))^3/3! + (3^4*x + log(1+x))^4/4! + (3^5*x + log(1+x))^5/5! + (3^6*x + log(1+x))^6/6! + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, 3^(m^2) * (1+x +x*O(x^n))^(3^m) * x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = n! * sum(k=0, n, 3^(k^2) * binomial(3^k, n-k)/k!)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A326084.
Sequence in context: A224475 A352020 A091268 * A158082 A017090 A029995
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2019
STATUS
approved