login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326085
E.g.f.: Sum_{n>=0} 3^(n^2) * (1+x)^(3^n) * x^n / n!.
1
1, 4, 99, 21924, 45207549, 864861114348, 151334173143255375, 240066309264838323117084, 3437872832425973181485795041113, 443629285029172409524181790790692095604, 515464807018375729400140781858676274403447441691, 5391365666991000164547212259503680126841305476860172028212
OFFSET
0,2
COMMENTS
More generally, the following sums are equal:
(1) Sum_{n>=0} (q^n + p)^n * r^n / n!,
(2) Sum_{n>=0} q^(n^2) * exp(p*q^n*r) * r^n/n!;
here, q = 3 and p = log(1+x)/x, r = x.
FORMULA
E.g.f.: Sum_{n>=0} (3^n*x + log(1+x))^n / n!.
E.g.f.: Sum_{n>=0} log( exp(3^n*x) * (1+x) )^n / n!.
E.g.f.: Sum_{n>=0} 3^(n^2) * (1+x)^(3^n) * x^n / n!.
a(n) = n! * Sum_{k=0..n} 3^(k^2) * binomial(3^k,n-k) / k!.
EXAMPLE
E.g.f.: A(x) = 1 + 4*x + 99*x^2/2! + 21924*x^3/3! + 45207549*x^4/4! + 864861114348*x^5/5! + 151334173143255375*x^6/6! + 240066309264838323117084*x^7/7! + ...
such that
A(x) = 1 + 3*(1+x)^3*x + 3^4*(1+x)^9*x^2/2! + 3^9*(1+x)^27*x^3/3! + 3^16*(1+x)^81*x^4/4! + 3^25*(1+x)^243*x^5/5! + 3^36*(1+x)^729*x^6/6! + ...
also
A(x) = 1 + (3*x + log(1+x)) + (3^2*x + log(1+x))^2/2! + (3^3*x + log(1+x))^3/3! + (3^4*x + log(1+x))^4/4! + (3^5*x + log(1+x))^5/5! + (3^6*x + log(1+x))^6/6! + ...
PROG
(PARI) {a(n) = my(A = sum(m=0, n, 3^(m^2) * (1+x +x*O(x^n))^(3^m) * x^m/m!)); n!*polcoeff(A, n)}
for(n=0, 15, print1(a(n), ", "))
(PARI) {a(n) = n! * sum(k=0, n, 3^(k^2) * binomial(3^k, n-k)/k!)}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Cf. A326084.
Sequence in context: A224475 A352020 A091268 * A158082 A017090 A029995
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jun 10 2019
STATUS
approved