OFFSET
1,1
COMMENTS
a(n) is the unique positive integer less than 10^n such that a(n) + 2^(n-1) - 1 is divisible by 2^n and a(n) + 1 is divisible by 5^n.
LINKS
Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Trimorphic Number
FORMULA
a(n) = (A224473(n) + 10^n / 2) mod 10^n.
MATHEMATICA
Table[Mod[2*5^2^n+(10^n/2)-1, 10^n], {n, 20}] (* Harvey P. Dale, Sep 08 2024 *)
PROG
(Sage) def A224475(n) : return crt(2^(n-1)+1, -1, 2^n, 5^n)
CROSSREFS
KEYWORD
nonn,base,changed
AUTHOR
Eric M. Schmidt, Apr 07 2013
STATUS
approved