The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224478 (16^(5^n) + (10^n)/2 - 1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5. 3
 0, 25, 875, 4375, 59375, 609375, 2109375, 37109375, 287109375, 6787109375, 31787109375, 581787109375, 5081787109375, 90081787109375, 240081787109375, 8740081787109375, 93740081787109375, 243740081787109375, 2743740081787109375, 57743740081787109375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the unique nonnegative integer less than 10^n such that a(n) + 2^(n-1) + 1 is divisible by 2^n and a(n) is divisible by 5^n. LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Trimorphic Number FORMULA a(n) = (A016090(n) + 10^n/2 - 1) mod 10^n. PROG (Sage) def A224478(n) : return crt(2^(n-1)-1, 0, 2^n, 5^n) CROSSREFS Cf. A033819. Converges to the 10-adic number A091663. The other trimorphic numbers ending in 5 are included in A007185, A216093, and A224477. Sequence in context: A274469 A223258 A209119 * A159332 A218589 A264006 Adjacent sequences:  A224475 A224476 A224477 * A224479 A224480 A224481 KEYWORD nonn,base AUTHOR Eric M. Schmidt, Apr 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 21 08:38 EST 2022. Contains 350475 sequences. (Running on oeis4.)