

A224478


(16^(5^n) + (10^n)/2  1) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5.


3



0, 25, 875, 4375, 59375, 609375, 2109375, 37109375, 287109375, 6787109375, 31787109375, 581787109375, 5081787109375, 90081787109375, 240081787109375, 8740081787109375, 93740081787109375, 243740081787109375, 2743740081787109375, 57743740081787109375
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

a(n) is the unique nonnegative integer less than 10^n such that a(n) + 2^(n1) + 1 is divisible by 2^n and a(n) is divisible by 5^n.


LINKS

Eric M. Schmidt, Table of n, a(n) for n = 1..1000
Eric Weisstein's World of Mathematics, Trimorphic Number
Index entries for sequences related to automorphic numbers


FORMULA

a(n) = (A016090(n) + 10^n/2  1) mod 10^n.


PROG

(Sage) def A224478(n) : return crt(2^(n1)1, 0, 2^n, 5^n)


CROSSREFS

Cf. A033819. Converges to the 10adic number A091663. The other trimorphic numbers ending in 5 are included in A007185, A216093, and A224477.
Sequence in context: A274469 A223258 A209119 * A159332 A218589 A264006
Adjacent sequences: A224475 A224476 A224477 * A224479 A224480 A224481


KEYWORD

nonn,base


AUTHOR

Eric M. Schmidt, Apr 07 2013


STATUS

approved



