The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A224477 (5^(2^n) + (10^n)/2) mod 10^n: a sequence of trimorphic numbers ending (for n > 1) in 5. 3
 0, 75, 125, 5625, 40625, 390625, 7890625, 62890625, 712890625, 3212890625, 68212890625, 418212890625, 4918212890625, 9918212890625, 759918212890625, 1259918212890625, 6259918212890625, 756259918212890625, 7256259918212890625, 42256259918212890625 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS a(n) is the unique nonnegative integer less than 10^n such that a(n) + 2^(n-1) - 1 is divisible by 2^n and a(n) is divisible by 5^n. LINKS Eric M. Schmidt, Table of n, a(n) for n = 1..1000 Eric Weisstein's World of Mathematics, Trimorphic Number FORMULA a(n) = (A007185(n) + 10^n/2) mod 10^n. PROG (Sage) def A224477(n) : return crt(2^(n-1)+1, 0, 2^n, 5^n) CROSSREFS Cf. A033819. Converges to the 10-adic number A018247. The other trimorphic numbers ending in 5 are included in A007185, A216093, and A224478. Sequence in context: A039485 A226475 A337251 * A045196 A118225 A260538 Adjacent sequences:  A224474 A224475 A224476 * A224478 A224479 A224480 KEYWORD nonn,base AUTHOR Eric M. Schmidt, Apr 07 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 18:34 EDT 2021. Contains 346273 sequences. (Running on oeis4.)