The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216093 a(n) = 10^n - (5^(2^n) mod 10^n). 7
 5, 75, 375, 9375, 9375, 109375, 7109375, 87109375, 787109375, 1787109375, 81787109375, 81787109375, 81787109375, 40081787109375, 740081787109375, 3740081787109375, 43740081787109375, 743740081787109375 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n)^3 mod 10^n = a(n). a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and a(n) + 1 is divisible by 2^n. - Eric M. Schmidt, Sep 01 2012 a(n+1) + a(n)^2 == 0 (mod 10^(n+1)). - Robert Israel, Apr 24 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..999 FORMULA 2^(4*5^(n-1)) mod 10^n - 1. MAPLE f:= n -> (-5 &^(2^n) mod 10^n): map(f, [\$1..30]); # Robert Israel, Apr 24 2017 PROG (Sage) def A216093(n) : return crt(-1, 0, 2^n, 5^n) # Eric M. Schmidt, Sep 01 2012 CROSSREFS Cf. A007185, A016090, A216092, A091663, A018248. Sequence in context: A285452 A048350 A030991 * A151752 A127212 A091903 Adjacent sequences: A216090 A216091 A216092 * A216094 A216095 A216096 KEYWORD nonn AUTHOR V. Raman, Sep 01 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 25 11:10 EST 2024. Contains 370324 sequences. (Running on oeis4.)