OFFSET
1,1
COMMENTS
a(n)^3 mod 10^n = a(n).
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 5^n and a(n) + 1 is divisible by 2^n. - Eric M. Schmidt, Sep 01 2012
a(n+1) + a(n)^2 == 0 (mod 10^(n+1)). - Robert Israel, Apr 24 2017
LINKS
Robert Israel, Table of n, a(n) for n = 1..999
FORMULA
2^(4*5^(n-1)) mod 10^n - 1.
MAPLE
f:= n -> (-5 &^(2^n) mod 10^n):
map(f, [$1..30]); # Robert Israel, Apr 24 2017
PROG
(Sage) def A216093(n) : return crt(-1, 0, 2^n, 5^n) # Eric M. Schmidt, Sep 01 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
V. Raman, Sep 01 2012
STATUS
approved