login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A216090
Numbers n such that k^(n-1) == k (mod n) for every k = 1, 2, ..., n-1.
2
1, 2, 6, 10, 14, 22, 26, 30, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 182, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482
OFFSET
1,2
COMMENTS
Subsequence of, but different from A197930, for example A197930(11) = 42 with 42 distinct residues, but the set R of the residues k^41 mod 42 is R = {1, 32, 33, 16, 17, 6, …, 9, 10, 41} for k = 1, 2, …, 41 instead R = {1, 2, 3, …, 40, 41}. Terms of A197930 that are not in this sequence: 42, 78, 110, 114, 138, 170, …
Squarefree numbers n such that A002322(n) divides n-2. Contains all doubled odd primes and all doubled Carmichael numbers. - Thomas Ordowski, Apr 23 2017
LINKS
EXAMPLE
a(4) = 10 because x^9 == 1, 2, ..., 9 (mod 10) with 9 distinct residues such that:
1^9 = 1 == 1 (mod 10);
2^9 = 512 == 2 (mod 10);
3^9 = 19683 == 3 (mod 10);
4^9 = 262144 == 4 (mod 10);
5^9 = 1953125 == 5 (mod 10);
6^9 = 10077696 == 6 (mod 10);
7^9 = 40353607 == 7 (mod 10);
8^9 = 134217728 == 8 (mod 10);
9^9 = 387420489 == 9 (mod 10).
MAPLE
with(numtheory):for n from 1 to 500 do:j:=0:for i from 1 to n do: if irem(i^(n-1), n)=i then j:=j+1:else fi:od:if j=n-1 then printf(`%d, `, n):else fi:od:
MATHEMATICA
f[n_] := And @@ Table[PowerMod[k, n - 1, n] == k, {k, n - 1}]; Select[Range[500], f] (* T. D. Noe, Sep 03 2012 *)
PROG
(PARI) isok(n) = {for (k=1, n-1, if (Mod(k, n)^(n-1) != Mod(k, n), return (0)); ); return (1); } \\ Michel Marcus, Apr 23 2017
(Python)
from sympy.ntheory.factor_ import core
from sympy import primefactors
def ok(n):
if n<3: return True
if core(n) == n:
for p in primefactors(n):
if (n - 2)%(p - 1): return False
return True
return False
print([n for n in range(1, 501) if ok(n)]) # Indranil Ghosh, Apr 23 2017
CROSSREFS
Subsequence of A192109.
Terms > 2 form a subsequence of A050990.
Sequence in context: A039956 A197930 A192109 * A378458 A342641 A118369
KEYWORD
nonn
AUTHOR
Michel Lagneau, Sep 01 2012
STATUS
approved