login
A342641
Numbers k such that A342640(k) = k.
4
0, 2, 6, 10, 14, 22, 30, 38, 42, 46, 54, 62, 78, 94, 110, 126, 142, 150, 158, 170, 174, 182, 190, 206, 222, 238, 254, 286, 310, 318, 350, 382, 414, 438, 446, 478, 510, 542, 558, 574, 606, 622, 638, 670, 682, 686, 702, 734, 750, 766, 798, 830, 862, 894, 926
OFFSET
1,2
COMMENTS
All terms are even.
For any m >= 0:
- let s(m) be the unique finite set of nonnegative integers such that m = Sum_{e in s(m)} 2^e,
- this sequence contains the numbers k such that s(k) is the set of nonnegative integers that are not the sum of two nonnegative integers not in s(k).
LINKS
EXAMPLE
The first terms, alongside the corresponding sets, are:
n a(n) s(a(n))
-- ---- ---------------
1 0 {}
2 2 {1}
3 6 {1, 2}
4 10 {1, 3}
5 14 {1, 2, 3}
6 22 {1, 2, 4}
7 30 {1, 2, 3, 4}
8 38 {1, 2, 5}
9 42 {1, 3, 5}
10 46 {1, 2, 3, 5}
11 54 {1, 2, 4, 5}
12 62 {1, 2, 3, 4, 5}
13 78 {1, 2, 3, 6}
14 94 {1, 2, 3, 4, 6}
15 110 {1, 2, 3, 5, 6}
PROG
(PARI) is(n) = { my (v=0); for (x=0, 2*#binary(n), my (f=0); for (y=0, x, if (!bittest(n, y) && !bittest(n, x-y), f=1; break)); if (!f, v+=2^x)); return (v==n) }
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 17 2021
STATUS
approved