OFFSET
1,2
COMMENTS
All terms are even.
For any m >= 0:
- let s(m) be the unique finite set of nonnegative integers such that m = Sum_{e in s(m)} 2^e,
- this sequence contains the numbers k such that s(k) is the set of nonnegative integers that are not the sum of two nonnegative integers not in s(k).
LINKS
Rémy Sigrist, Table of n, a(n) for n = 1..10000
EXAMPLE
The first terms, alongside the corresponding sets, are:
n a(n) s(a(n))
-- ---- ---------------
1 0 {}
2 2 {1}
3 6 {1, 2}
4 10 {1, 3}
5 14 {1, 2, 3}
6 22 {1, 2, 4}
7 30 {1, 2, 3, 4}
8 38 {1, 2, 5}
9 42 {1, 3, 5}
10 46 {1, 2, 3, 5}
11 54 {1, 2, 4, 5}
12 62 {1, 2, 3, 4, 5}
13 78 {1, 2, 3, 6}
14 94 {1, 2, 3, 4, 6}
15 110 {1, 2, 3, 5, 6}
PROG
(PARI) is(n) = { my (v=0); for (x=0, 2*#binary(n), my (f=0); for (y=0, x, if (!bittest(n, y) && !bittest(n, x-y), f=1; break)); if (!f, v+=2^x)); return (v==n) }
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 17 2021
STATUS
approved