login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342640
a(n) = A342639(n, n).
4
0, 3, 2, 15, 0, 11, 6, 63, 0, 3, 10, 47, 8, 27, 14, 255, 0, 3, 2, 15, 0, 43, 22, 191, 0, 35, 10, 111, 24, 59, 30, 1023, 0, 3, 2, 15, 0, 11, 38, 63, 0, 3, 42, 175, 8, 91, 46, 767, 0, 3, 2, 143, 32, 43, 54, 447, 32, 99, 42, 239, 56, 123, 62, 4095, 0, 3, 2, 15, 0
OFFSET
0,2
COMMENTS
For any n >= 0:
- let s(n) be the unique finite set of nonnegative integers such that n = Sum_{e in s(n)} 2^e,
- then s(a(n)) corresponds to the set of nonnegative integers that are not the sum of two nonnegative integers not in s(n).
LINKS
FORMULA
a(2^n-1) = 4^n-1.
EXAMPLE
The first terms, alongside the corresponding sets, are:
n a(n) s(n) s(a(n))
-- ---- ------------ ------------------------
0 0 {} {}
1 3 {0} {0, 1}
2 2 {1} {1}
3 15 {0, 1} {0, 1, 2, 3}
4 0 {2} {}
5 11 {0, 2} {0, 1, 3}
6 6 {1, 2} {1, 2}
7 63 {0, 1, 2} {0, 1, 2, 3, 4, 5}
8 0 {3} {}
9 3 {0, 3} {0, 1}
10 10 {1, 3} {1, 3}
11 47 {0, 1, 3} {0, 1, 2, 3, 5}
12 8 {2, 3} {3}
13 27 {0, 2, 3} {0, 1, 3, 4}
14 14 {1, 2, 3} {1, 2, 3}
15 255 {0, 1, 2, 3} {0, 1, 2, 3, 4, 5, 6, 7}
PROG
(PARI) a(n) = { my (v=0); for (x=0, 2*#binary(n), my (f=0); for (y=0, x, if (!bittest(n, y) && !bittest(n, x-y), f=1; break)); if (!f, v+=2^x)); return (v) }
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Mar 17 2021
STATUS
approved