login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A342639
Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = g(f(n) + f(k)) where g maps the complement, say s, of a finite set of nonnegative integers to the value Sum_{e >= 0 not in s} 2^e, f is the inverse of g, and "+" denotes the Minkowski sum.
4
0, 1, 1, 0, 3, 0, 3, 1, 1, 3, 0, 7, 2, 7, 0, 1, 1, 3, 3, 1, 1, 0, 3, 0, 15, 0, 3, 0, 7, 1, 5, 3, 3, 5, 1, 7, 0, 15, 2, 7, 0, 7, 2, 15, 0, 1, 1, 7, 3, 1, 1, 3, 7, 1, 1, 0, 3, 0, 31, 4, 11, 4, 31, 0, 3, 0, 3, 1, 1, 3, 7, 5, 5, 7, 3, 1, 1, 3, 0, 7, 2, 7, 0, 15, 6, 15, 0, 7, 2, 7, 0
OFFSET
0,5
COMMENTS
In other words:
- we consider the set S of sets s of nonnegative integers whose complement is finite,
- the function g encodes the "missing integers" in binary:
g(A001477 \ {1, 4}) = 2^1 + 2^4 = 18
- the function f is the inverse of g:
f(42) = f(2^1 + 2^3 + 2^5) = A001477 \ {1, 3, 5},
- the Minkowski sum of two sets, say U and V, is the set of sums u+v where u belongs to U and v belongs to V,
- the Minkowski sum is stable over S,
- and T provides an encoding for this operation.
This sequence has connections with A067138; here we consider complements of finite sets of nonnegative integers, there finite sets of nonnegative integers.
LINKS
FORMULA
T(n, k) = T(k, n).
T(m, T(n, k)) = T(T(m, n), k).
T(n, 0) = A135481(n).
T(n, 1) = A038712(n+1).
T(2^n-1, 2^k-1) = 2^(n+k)-1.
T(n, n) = A342640(n).
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
---+------------------------------------------------------------------
0| 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 15
1| 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31
2| 0 1 2 3 0 5 2 7 0 1 2 11 0 5 2 15
3| 3 7 3 15 3 7 3 31 3 7 3 15 3 7 3 63
4| 0 1 0 3 0 1 4 7 0 1 0 3 0 9 4 15
5| 1 3 5 7 1 11 5 15 1 3 5 23 1 11 5 31
6| 0 1 2 3 4 5 6 7 0 9 2 11 4 13 6 15
7| 7 15 7 31 7 15 7 63 7 15 7 31 7 15 7 127
8| 0 1 0 3 0 1 0 7 0 1 0 3 0 1 8 15
9| 1 3 1 7 1 3 9 15 1 3 1 7 1 19 9 31
10| 0 1 2 3 0 5 2 7 0 1 10 11 0 5 10 15
11| 3 7 11 15 3 23 11 31 3 7 11 47 3 23 11 63
12| 0 1 0 3 0 1 4 7 0 1 0 3 8 9 12 15
13| 1 3 5 7 9 11 13 15 1 19 5 23 9 27 13 31
14| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
15| 15 31 15 63 15 31 15 127 15 31 15 63 15 31 15 255
PROG
(PARI) T(n, k) = { my (v=0); for (x=0, #binary(n)+#binary(k), my (f=0); for (y=0, x, if (!bittest(n, y) && !bittest(k, x-y), f=1; break)); if (!f, v+=2^x)); return (v) }
KEYWORD
nonn,tabl,base
AUTHOR
Rémy Sigrist, Mar 17 2021
STATUS
approved