Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Mar 20 2021 14:37:21
%S 0,1,1,0,3,0,3,1,1,3,0,7,2,7,0,1,1,3,3,1,1,0,3,0,15,0,3,0,7,1,5,3,3,5,
%T 1,7,0,15,2,7,0,7,2,15,0,1,1,7,3,1,1,3,7,1,1,0,3,0,31,4,11,4,31,0,3,0,
%U 3,1,1,3,7,5,5,7,3,1,1,3,0,7,2,7,0,15,6,15,0,7,2,7,0
%N Square array T(n, k), n, k >= 0, read by antidiagonals; T(n, k) = g(f(n) + f(k)) where g maps the complement, say s, of a finite set of nonnegative integers to the value Sum_{e >= 0 not in s} 2^e, f is the inverse of g, and "+" denotes the Minkowski sum.
%C In other words:
%C - we consider the set S of sets s of nonnegative integers whose complement is finite,
%C - the function g encodes the "missing integers" in binary:
%C g(A001477 \ {1, 4}) = 2^1 + 2^4 = 18
%C - the function f is the inverse of g:
%C f(42) = f(2^1 + 2^3 + 2^5) = A001477 \ {1, 3, 5},
%C - the Minkowski sum of two sets, say U and V, is the set of sums u+v where u belongs to U and v belongs to V,
%C - the Minkowski sum is stable over S,
%C - and T provides an encoding for this operation.
%C This sequence has connections with A067138; here we consider complements of finite sets of nonnegative integers, there finite sets of nonnegative integers.
%H Rémy Sigrist, <a href="/A342639/b342639.txt">Table of n, a(n) for n = 0..10010</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Minkowski_addition">Minkowski addition</a>
%F T(n, k) = T(k, n).
%F T(m, T(n, k)) = T(T(m, n), k).
%F T(n, 0) = A135481(n).
%F T(n, 1) = A038712(n+1).
%F T(2^n-1, 2^k-1) = 2^(n+k)-1.
%F T(n, n) = A342640(n).
%e Array T(n, k) begins:
%e n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
%e ---+------------------------------------------------------------------
%e 0| 0 1 0 3 0 1 0 7 0 1 0 3 0 1 0 15
%e 1| 1 3 1 7 1 3 1 15 1 3 1 7 1 3 1 31
%e 2| 0 1 2 3 0 5 2 7 0 1 2 11 0 5 2 15
%e 3| 3 7 3 15 3 7 3 31 3 7 3 15 3 7 3 63
%e 4| 0 1 0 3 0 1 4 7 0 1 0 3 0 9 4 15
%e 5| 1 3 5 7 1 11 5 15 1 3 5 23 1 11 5 31
%e 6| 0 1 2 3 4 5 6 7 0 9 2 11 4 13 6 15
%e 7| 7 15 7 31 7 15 7 63 7 15 7 31 7 15 7 127
%e 8| 0 1 0 3 0 1 0 7 0 1 0 3 0 1 8 15
%e 9| 1 3 1 7 1 3 9 15 1 3 1 7 1 19 9 31
%e 10| 0 1 2 3 0 5 2 7 0 1 10 11 0 5 10 15
%e 11| 3 7 11 15 3 23 11 31 3 7 11 47 3 23 11 63
%e 12| 0 1 0 3 0 1 4 7 0 1 0 3 8 9 12 15
%e 13| 1 3 5 7 9 11 13 15 1 19 5 23 9 27 13 31
%e 14| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
%e 15| 15 31 15 63 15 31 15 127 15 31 15 63 15 31 15 255
%o (PARI) T(n,k) = { my (v=0); for (x=0, #binary(n)+#binary(k), my (f=0); for (y=0, x, if (!bittest(n,y) && !bittest(k,x-y), f=1; break)); if (!f, v+=2^x)); return (v) }
%Y Cf. A038712, A067138, A133457, A135481, A342640, A342641, A342642.
%K nonn,tabl,base
%O 0,5
%A _Rémy Sigrist_, Mar 17 2021