login
A216092
a(n) = 2^(2*5^(n-1)) mod 10^n.
5
4, 24, 624, 624, 90624, 890624, 2890624, 12890624, 212890624, 8212890624, 18212890624, 918212890624, 9918212890624, 59918212890624, 259918212890624, 6259918212890624, 56259918212890624, 256259918212890624
OFFSET
1,1
COMMENTS
a(n)^3 mod 10^n = a(n).
a(n) is the unique positive integer less than 10^n such that a(n) is divisible by 2^n and a(n) + 1 is divisible by 5^n. - Eric M. Schmidt, Sep 01 2012
FORMULA
a(n) = 5^(2^n) mod 10^n - 1.
MATHEMATICA
Table[PowerMod[5, 2^n, 10^n], {n, 20}]-1 (* Harvey P. Dale, Dec 17 2017 *)
PROG
(Sage) def A216092(n) : return crt(0, -1, 2^n, 5^n) # Eric M. Schmidt, Sep 01 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
V. Raman, Sep 01 2012
STATUS
approved