|
|
A197930
|
|
Numbers n such that the number of distinct residues in x^(n-1) (mod n), x=0..n-1, equals n.
|
|
4
|
|
|
1, 2, 6, 10, 14, 22, 26, 30, 34, 38, 42, 46, 58, 62, 74, 78, 82, 86, 94, 102, 106, 110, 114, 118, 122, 134, 138, 142, 146, 158, 166, 170, 174, 178, 182, 194, 202, 206, 210, 214, 218, 222, 226, 230, 254, 258, 262, 266, 274, 278, 282, 290, 298, 302, 314, 318
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
a(n) = n if n = 2p, p prime > 2, or n = 2q with q nonprime such that q = 1, 15, 21, 39, 51, 55, 57, 69, 85, 87, 91,…
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
n such that A197929(n) = n.
|
|
EXAMPLE
|
a(8) = 30 because x^29 == 0,1,2, …,28,29 (mod 30) with 30 distinct residues.
|
|
MATHEMATICA
|
lst={}; Table[If[Length[Union[PowerMod[Range[0, n-1], n-1, n]]]==n, AppendTo[lst, n]], {n, 320}]; lst
Select[Range[400], Length[Union[PowerMod[Range[0, #-1], #-1, #]]]==#&] (* Harvey P. Dale, Nov 06 2016 *)
|
|
CROSSREFS
|
Cf. A197929, A195637.
Sequence in context: A354715 A239221 A039956 * A192109 A216090 A342641
Adjacent sequences: A197927 A197928 A197929 * A197931 A197932 A197933
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Michel Lagneau, Oct 19 2011
|
|
STATUS
|
approved
|
|
|
|