login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127212
a(n) = 5^n*Lucas(n), where Lucas = A000204.
10
5, 75, 500, 4375, 34375, 281250, 2265625, 18359375, 148437500, 1201171875, 9716796875, 78613281250, 635986328125, 5145263671875, 41625976562500, 336761474609375, 2724456787109375, 22041320800781250, 178318023681640625
OFFSET
1,1
FORMULA
a(n) = Trace of matrix [({5,5},{5,0})^n].
a(n) = 5^n * Trace of matrix [({1,1},{1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 5*a(n-1) + 25*a(n-2).
G.f.: -5*x*(10*x+1)/(25*x^2+5*x-1). (End)
MATHEMATICA
Table[5^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}]
Table[5^n*LucasL[n], {n, 1, 50}] (* G. C. Greubel, Dec 18 2017 *)
LinearRecurrence[{5, 25}, {5, 75}, 20] (* Harvey P. Dale, Jan 11 2024 *)
PROG
(PARI) x='x+O('x^30); Vec(-5*x*(10*x+1)/(25*x^2+5*x-1)) \\ G. C. Greubel, Dec 18 2017
(Magma) [5^n*Lucas(n): n in [1..30]]; // G. C. Greubel, Dec 18 2017
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Jan 09 2007
STATUS
approved