login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A127214 a(n) = 2^n*tribonacci(n) or (2^n)*A001644(n+1). 10
2, 12, 56, 176, 672, 2496, 9088, 33536, 123392, 453632, 1669120, 6139904, 22585344, 83083264, 305627136, 1124270080, 4135714816, 15213527040, 55964073984, 205867974656, 757300461568, 2785785413632, 10247716470784, 37696978288640, 138671105769472 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (2,4,8).

FORMULA

a(n) = Trace of matrix [({2,2,2},{2,0,0}m{0,2,0)^n].

a(n) = 2^n * Trace of matrix [({1,1,1},{1,0,0},0,1,0)^n].

From Colin Barker, Sep 02 2013: (Start)

a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3).

G.f.: -2*x*(12*x^2+4*x+1)/(8*x^3+4*x^2+2*x-1). (End)

MATHEMATICA

Table[Tr[MatrixPower[2*{{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}, x]], {x, 1, 20}]

LinearRecurrence[{2, 4, 8}, {2, 12, 56}, 50] (* G. C. Greubel, Dec 18 2017 *)

PROG

(PARI) x='x+O('x^30); Vec(-2*x*(12*x^2+4*x+1)/(8*x^3+4*x^2+2*x-1)) \\ G. C. Greubel, Dec 18 2017

(MAGMA) I:=[2, 12, 56]; [n le 3 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 18 2017

CROSSREFS

Cf. A087131, A127210, A127211, A127212, A127213, A127215, A127216.

Sequence in context: A181541 A197230 A025171 * A304194 A124723 A122229

Adjacent sequences:  A127211 A127212 A127213 * A127215 A127216 A127217

KEYWORD

nonn,easy

AUTHOR

Artur Jasinski, Jan 09 2007

EXTENSIONS

More terms from Colin Barker, Sep 02 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 8 14:04 EDT 2020. Contains 336298 sequences. (Running on oeis4.)