login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127210
a(n) = 3^n*Lucas(n), where Lucas = A000204.
10
3, 27, 108, 567, 2673, 13122, 63423, 308367, 1495908, 7263027, 35252253, 171124002, 830642283, 4032042867, 19571909148, 95004113247, 461159522073, 2238515585442, 10865982454983, 52744587633927, 256027604996628, 1242784103695227, 6032600756055333, 29282859201423042
OFFSET
1,1
LINKS
Ivica Martinjak, Two Extensions of the Sury's Identity, arXiv:1508.01444 [math.CO], 2015.
FORMULA
a(n) = Trace of matrix [({3,3},{3,0})^n] = 3^n * Trace of matrix [({1,1},{1,0})^n].
From R. J. Mathar, Oct 27 2008: (Start)
a(n) = 3*a(n-1) + 9*a(n-2).
G.f.: 3*x*(1 + 6*x)/(1 - 3*x - 9*x^2).
a(n) = 3*A099012(n) +18*A099012(n-1). (End)
MATHEMATICA
Table[3^n Tr[MatrixPower[{{1, 1}, {1, 0}}, x]], {x, 1, 20}]
Table[3^n LucasL[n], {n, 25}] (* Vincenzo Librandi, Aug 07 2015 *)
PROG
(PARI) lucas(n) = fibonacci(n-1) + fibonacci(n+1);
vector(30, n, 3^n*lucas(n)) \\ Michel Marcus, Aug 07 2015
(Magma) [3^n*Lucas(n): n in [1..30]]; // Vincenzo Librandi, Aug 07 2015
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Jan 09 2007
EXTENSIONS
More terms from Michel Marcus, Aug 07 2015
STATUS
approved