login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161807
A trisection of A161804: a(n) = A161804(3n+2) for n>=0.
3
3, 27, 111, 378, 1356, 4131, 10881, 29106, 73500, 167643, 382053, 849339, 1754061, 3605094, 7330311, 14094945, 26980563, 51481332, 93965784, 170910270, 311155296, 545970024, 955201653, 1676274750, 2849709768, 4831999623
OFFSET
0,1
COMMENTS
G.f. of A161804 is exp( Sum_{n>=1} A002129(n) * 3*A038500(n) * q^n/n ),
where A002129 forms the l.g.f. of log[ Sum_{n>=0} x^(n(n+1)/2) ], and
A038500(n) is the highest power of 3 dividing n.
EXAMPLE
G.f.: T_2(q) = 3 + 27*q + 111*q^2 + 378*q^3 + 1356*q^4 + 4131*q^5 +...
Terms are divisible by 3:
A/3=[1,9,37,126,452,1377,3627,9702,24500,55881,127351,283113,...].
PROG
(PARI) {a(n)=local(L=sum(m=1, 3*n+2, 3*3^valuation(m, 3)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^(3*n+2))); polcoeff(exp(L), 3*n+2)}
CROSSREFS
Cf. A161804, other trisections: A161805 (T_0), A161806 (T_1).
Sequence in context: A195799 A297662 A127210 * A261716 A267924 A241678
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 20 2009
STATUS
approved