login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161808
G.f.: A(q) = exp( Sum_{n>=1} A162552(n) * 3*A038500(n) * q^n/n ).
1
1, 3, 3, 3, 9, 12, 12, 27, 36, 57, 141, 165, 135, 321, 450, 399, 780, 1068, 1308, 2913, 3537, 2736, 5940, 8430, 7173, 13251, 18267, 17661, 35007, 45051, 31866, 58506, 85890, 65694, 102000, 145293, 101547, 140574, 203781, 114765, 93051, 161754
OFFSET
0,2
COMMENTS
A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], and
A038500(n) is the highest power of 3 dividing n.
The first negative term is a(43) = -162729.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..10000 (terms 0..100 from Georg Fischer)
EXAMPLE
G.f.: A(q) = 1 + 3*q + 3*q^2 + 3*q^3 + 9*q^4 + 12*q^5 + 12*q^6 +...
log(A(q)) = 3*q - 3*q^2/2 + 9*q^3/3 + 9*q^4/4 - 12*q^5/5 + 45*q^6/6 - 18*q^7/7 +...
Compare to: q - q^2/2 + q^3/3 + 3*q^4/4 - 4*q^5/5 + 5*q^6/6 - 6*q^7/7 +...
which equals log( Sum_{n>=0} q^(n^2) ) as described by A162552.
PROG
(PARI) {a(n)=local(Q=sum(m=0, n, x^(m^2))+x*O(x^n), A); A=exp(sum(k=1, n, polcoeff(log(Q), k)*3*3^valuation(k, 3)*x^k)+x*O(x^n)); polcoeff(A, n)}
CROSSREFS
Cf. A161804 (variant).
Sequence in context: A127975 A060828 A332337 * A188344 A217457 A231753
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 21 2009
STATUS
approved