login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(q) = exp( Sum_{n>=1} A162552(n) * 3*A038500(n) * q^n/n ).
1

%I #11 Feb 18 2019 23:47:15

%S 1,3,3,3,9,12,12,27,36,57,141,165,135,321,450,399,780,1068,1308,2913,

%T 3537,2736,5940,8430,7173,13251,18267,17661,35007,45051,31866,58506,

%U 85890,65694,102000,145293,101547,140574,203781,114765,93051,161754

%N G.f.: A(q) = exp( Sum_{n>=1} A162552(n) * 3*A038500(n) * q^n/n ).

%C A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], and

%C A038500(n) is the highest power of 3 dividing n.

%C The first negative term is a(43) = -162729.

%H Paul D. Hanna, <a href="/A161808/b161808.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..100 from Georg Fischer)

%e G.f.: A(q) = 1 + 3*q + 3*q^2 + 3*q^3 + 9*q^4 + 12*q^5 + 12*q^6 +...

%e log(A(q)) = 3*q - 3*q^2/2 + 9*q^3/3 + 9*q^4/4 - 12*q^5/5 + 45*q^6/6 - 18*q^7/7 +...

%e Compare to: q - q^2/2 + q^3/3 + 3*q^4/4 - 4*q^5/5 + 5*q^6/6 - 6*q^7/7 +...

%e which equals log( Sum_{n>=0} q^(n^2) ) as described by A162552.

%o (PARI) {a(n)=local(Q=sum(m=0,n,x^(m^2))+x*O(x^n),A); A=exp(sum(k=1,n,polcoeff(log(Q),k)*3*3^valuation(k,3)*x^k)+x*O(x^n));polcoeff(A,n)}

%Y Cf. A161804 (variant).

%K sign

%O 0,2

%A _Paul D. Hanna_, Jul 21 2009