login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161804
G.f.: A(q) = exp( Sum_{n>=1} A002129(n) * 3*A038500(n) * q^n/n ).
4
1, 3, 3, 12, 30, 27, 66, 141, 111, 255, 513, 378, 903, 1815, 1356, 2970, 5727, 4131, 8571, 15882, 10881, 23001, 42417, 29106, 59763, 108165, 73500, 145164, 255831, 167643, 333693, 585258, 382053, 751059, 1302966, 849339, 1623009, 2762349
OFFSET
0,2
COMMENTS
A002129 forms the l.g.f. of log[ Sum_{n>=0} x^(n(n+1)/2) ], while 3*A038500 forms the l.g.f. of the log of the g.f. of A161809 and A038500(n) is the highest power of 3 dividing n.
FORMULA
Given trisections where A(q) = T_0(q^3) + q*T_1(q^3) + q^2*T_2(q^3):
T_0(q) = Sum_{n>=0} a(3n)*q^n,
T_1(q) = Sum_{n>=0} a(3n+1)*q^n,
T_2(q) = Sum_{n>=0} a(3n+2)*q^n,
then it appears that:
T_1(-q)/T_0(-q) = 3*q^(-1/3)*(eta(q^6)^4/(eta(q)*eta(q^3)*eta(q^4)*eta(q^12)))^2 (Cf. A132977);
T_2(-q)/T_0(-q) = 3*q^(-2/3)*(eta(q^2)*eta(q^6))^2*eta(q^3)*eta(q^12)/(eta(q)*eta(q^4))^3 (cf. A132978);
T_2(q)/T_1(q) = g.f. of A092848, the reciprocal of Hauptmodul for Gamma_0(18).
EXAMPLE
G.f.: A(q) = 1 + 3*q + 3*q^2 + 12*q^3 + 30*q^4 + 27*q^5 + 66*q^6 + ...
log(A(q)) = 3*q - 3*q^2 + 36*q^3 - 15*q^4 + 18*q^5 - 36*q^6 + 24*q^7 + ...
Sum_{n>=1} A002129(n)*q^n/n = log(1 + q + q^3 + q^6 + q^10 + q^15 + ...),
Sum_{n>=1} 3*A038500(n)*x^n/n = log of the g.f. of A161809.
TRISECTIONS:
T_0(q) = 1 + 12*q + 66*q^2 + 255*q^3 + 903*q^4 + 2970*q^5 + ... (A161805)
T_1(q) = 3 + 30*q + 141*q^2 + 513*q^3 + 1815*q^4 + 5727*q^5 + ... (A161806)
T_2(q) = 3 + 27*q + 111*q^2 + 378*q^3 + 1356*q^4 + 4131*q^5 + ... (A161807)
where T_1(-q)/T_0(-q)/3 equals (cf. A132977):
1 + 2*q + 5*q^2 + 12*q^3 + 26*q^4 + 50*q^5 + 92*q^6 + 168*q^7 + ...
and T_2(-q)/T_0(-q)/3 equals (cf. A132978):
1 + 3*q + 7*q^2 + 15*q^3 + 32*q^4 + 63*q^5 + 114*q^6 + 201*q^7 + ...
also, T_2(q)/T_1(q) equals (cf. A092848):
1 - q + 2*q^3 - 2*q^4 - q^5 + 4*q^6 - 4*q^7 - q^8 + 8*q^9 - 8*q^10 + ...
PROG
(PARI) {a(n)=local(L=sum(m=1, n, 3*3^valuation(m, 3)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
CROSSREFS
Cf. trisections: A161805 (T_0), A161806 (T_1), A161807 (T_2).
Cf. A132977 (T_1/T_0), A132978 (T_2/T_0), A092848 (T_2/T_1).
Cf. A002129, A038500, A161809, A161800 (variant).
Sequence in context: A268639 A192307 A328150 * A097342 A370145 A025236
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jul 20 2009
STATUS
approved