login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A161803
G.f.: A(x) = exp( Sum_{n>=1} A162552(n) * 2*A006519(n) * x^n/n ).
0
1, 2, 0, -2, 6, 12, 0, -8, 24, 44, 0, -30, 54, 104, 0, -60, 238, 466, 0, -402, 924, 1892, 0, -1228, 3264, 6006, 0, -4052, 6688, 13052, 0, -7452, 16536, 32140, 0, -24828, 39660, 85744, 0, -53592, 114336, 212406, 0, -141090, 190754, 386956, 0, -216572, 136078
OFFSET
0,2
COMMENTS
A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], while
2*A006519 forms the l.g.f. of binary partitions (A000123) and
A006519(n) is the highest power of 2 dividing n.
EXAMPLE
G.f.: 1 + 2*x - 2*x^3 + 6*x^4 + 12*x^5 - 8*x^7 + 24*x^8 + 44*x^9 +...
PROG
(PARI) {a(n)=local(SQ=sum(m=0, sqrtint(n+1), x^(m^2))+x*O(x^n), L=sum(m=1, n, 2*2^valuation(m, 2)*polcoeff(log(SQ), m)*x^m)+x*O(x^n)); polcoeff(exp(L), n)}
CROSSREFS
Sequence in context: A303439 A303345 A175802 * A057980 A242840 A081081
KEYWORD
sign
AUTHOR
Paul D. Hanna, Jul 19 2009
STATUS
approved