login
A192307
0-sequence of reduction of (3n) by x^2 -> x+1.
2
3, 3, 12, 24, 54, 108, 213, 405, 756, 1386, 2508, 4488, 7959, 14007, 24492, 42588, 73698, 126996, 218025, 373065, 636468, 1082958, 1838232, 3113424, 5262699, 8879403, 14956428, 25153440, 42241806, 70844796
OFFSET
1,1
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
a(n) = 3*A190062(n).
G.f.: 3*x*(1-2*x+2*x^2)/(1-x)/(1-x-x^2)^2. [Colin Barker, Feb 11 2012]
MATHEMATICA
c[n_] := 3 n; (* *)
Table[c[n], {n, 1, 15}]
q[x_] := x + 1;
p[0, x_] := 3; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192307 *)
Table[Coefficient[Part[t, n]/3, x, 0], {n, 1, 30}] (* A190062 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192308 *)
Table[Coefficient[Part[t, n]/3, x, 1], {n, 1, 30}] (* A122491 *)
(* by Peter J. C. Moses, Jun 20 2011 *)
CROSSREFS
Sequence in context: A268798 A136533 A268639 * A328150 A161804 A097342
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved