login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190062
a(n) = n*Fibonacci(n) - Sum_{i=0..n-1} Fibonacci(i).
5
0, 1, 1, 4, 8, 18, 36, 71, 135, 252, 462, 836, 1496, 2653, 4669, 8164, 14196, 24566, 42332, 72675, 124355, 212156, 360986, 612744, 1037808, 1754233, 2959801, 4985476, 8384480, 14080602, 23614932, 39556031, 66181311, 110608188, 184670694
OFFSET
0,4
LINKS
Carlos Alirio Rico Acevedo, Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
FORMULA
G.f.: x*(1-2*x+2*x^2)/((1-x)*(1-x-x^2)^2).
a(n) = A045925(n) - A000071(n+1).
a(n) = (n-1)*Fibonacci(n) - Fibonacci(n-1) + 1.
a(n) = (((2*n-1)*r-5)*(1+r)^n-((2*n-1)*r+5)*(1-r)^n)/(10*2^n)+1, where r=sqrt(5).
MATHEMATICA
CoefficientList[Series[x (1 - 2 x + 2 x^2) / ((1 - x) (1 - x - x^2)^2), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 19 2013 *)
PROG
(Magma) [0] cat [n*Fibonacci(n)-(&+[Fibonacci(k): k in [0..n-1]]): n in [1..34]];
(PARI) concat(0, Vec(x*(1-2*x+2*x^2)/((1-x)*(1-x-x^2)^2) + O(x^50))) \\ Altug Alkan, Nov 13 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, May 04 2011
STATUS
approved