OFFSET
0,4
COMMENTS
Similar to A190062.
Also the circuit rank and corank of the n-Lucas cube graph. - Eric W. Weisstein, Jul 28 2023
LINKS
Bruno Berselli, Table of n, a(n) for n = 0..1000
Carlos Alirio Rico Acevedo, Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
Eric Weisstein's World of Mathematics, Circuit Rank
Eric Weisstein's World of Mathematics, Corank
Eric Weisstein's World of Mathematics, Lucas Cube Graph
Index entries for linear recurrences with constant coefficients, signature (3,-1,-3,1,1).
FORMULA
a(n) = n * Fibonacci(n) - Fibonacci(n+2) + 1. - Stefan Steinerberger, Feb 22 2008
G.f.: x^3*(2-x)/((1-x)*(1-x-x^2)^2). - Colin Barker, Feb 10 2012
a(n+2) = Sum_{k=0..n} A099920(k). - J. M. Bergot, Apr 13 2013
EXAMPLE
a(5) = 13 because Fib(5) = 5, times 5 = 25 and subtract sum(Fib(5)) = 12 to get 13.
MAPLE
with(combinat, fibonacci): for i from 1 to 30 do i*fibonacci(i) - sum(fibonacci(k), k=0..i); end do;
MATHEMATICA
Table[n Fibonacci[n] - Fibonacci[n + 2] + 1, {n, 0, 40}] (* Stefan Steinerberger, Feb 22 2008 *)
LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 0, 2, 5}, 40] (* Harvey P. Dale, May 17 2016 *)
PROG
(PARI) a(n)=n*fibonacci(n) - fibonacci(n+2) + 1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ben Paul Thurston, Sep 16 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 17 2006
STATUS
approved