login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A122491
a(n) = n * Fibonacci(n) - Sum_{i=0..n} Fibonacci(i).
7
0, 0, 0, 2, 5, 13, 28, 58, 114, 218, 407, 747, 1352, 2420, 4292, 7554, 13209, 22969, 39748, 68494, 117590, 201210, 343275, 584087, 991440, 1679208, 2838408, 4789058, 8066669, 13566373, 22782892, 38209762, 64003002, 107083610, 178967807, 298803459, 498404504
OFFSET
0,4
COMMENTS
Similar to A190062.
Also the circuit rank and corank of the n-Lucas cube graph. - Eric W. Weisstein, Jul 28 2023
LINKS
Carlos Alirio Rico Acevedo, Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
Eric Weisstein's World of Mathematics, Circuit Rank
Eric Weisstein's World of Mathematics, Corank
Eric Weisstein's World of Mathematics, Lucas Cube Graph
FORMULA
a(n) = n * Fibonacci(n) - Fibonacci(n+2) + 1. - Stefan Steinerberger, Feb 22 2008
G.f.: x^3*(2-x)/((1-x)*(1-x-x^2)^2). - Colin Barker, Feb 10 2012
a(n+2) = Sum_{k=0..n} A099920(k). - J. M. Bergot, Apr 13 2013
a(n) = 2*A006478(n)-A006478(n-1). - R. J. Mathar, May 04 2014
EXAMPLE
a(5) = 13 because Fib(5) = 5, times 5 = 25 and subtract sum(Fib(5)) = 12 to get 13.
MAPLE
with(combinat, fibonacci): for i from 1 to 30 do i*fibonacci(i) - sum(fibonacci(k), k=0..i); end do;
MATHEMATICA
Table[n Fibonacci[n] - Fibonacci[n + 2] + 1, {n, 0, 40}] (* Stefan Steinerberger, Feb 22 2008 *)
LinearRecurrence[{3, -1, -3, 1, 1}, {0, 0, 0, 2, 5}, 40] (* Harvey P. Dale, May 17 2016 *)
PROG
(PARI) a(n)=n*fibonacci(n) - fibonacci(n+2) + 1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. A000045.
Sequence in context: A216378 A225690 A193044 * A320933 A290194 A241392
KEYWORD
nonn,easy
AUTHOR
Ben Paul Thurston, Sep 16 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 17 2006
STATUS
approved