|
|
A122492
|
|
Semiprimes k such that 1 + 2k + 3k^2 is also semiprime.
|
|
1
|
|
|
4, 6, 9, 10, 15, 21, 22, 33, 35, 57, 69, 77, 82, 86, 95, 111, 123, 134, 143, 146, 161, 183, 202, 203, 209, 218, 219, 221, 249, 262, 267, 298, 299, 302, 314, 321, 323, 326, 329, 334, 335, 339, 341, 417, 422, 446, 454, 471, 489, 515, 543, 551, 554, 562, 566, 573
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
EXAMPLE
|
k = 4 = 2*2 (semiprime) is a term because 1 + 2k + 3k^2 = 57 = 3*19 (semiprime), etc.
|
|
MATHEMATICA
|
Select[Range[600], PrimeOmega[#]==PrimeOmega[1+2#+3#^2]==2&] (* Harvey P. Dale, Nov 04 2023 *)
|
|
PROG
|
(Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [ n: n in [2..600] | IsSemiprime(n) and IsSemiprime(1+2*n+3*n^2)]; // Vincenzo Librandi, Jan 09 2019
|
|
CROSSREFS
|
Cf. A086285 (numbers k such that 1 + 2k + 3k^2 is prime).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|