login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192309
0-sequence of reduction of (3n-1) by x^2 -> x+1.
3
2, 2, 10, 21, 49, 100, 200, 384, 722, 1331, 2419, 4344, 7726, 13630, 23882, 41601, 72101, 124412, 213844, 366300, 625522, 1065247, 1809575, 3067056, 5187674, 8758010, 14760010, 24835629, 41727577, 70012756
OFFSET
1,1
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
Empirical G.f.: x*(2-4*x+6*x^2-x^3)/(1-3*x+x^2+3*x^3-x^4-x^5). [Colin Barker, Feb 09 2012]
MATHEMATICA
c[n_] := 3 n - 1;
Table[c[n], {n, 1, 15}]
q[x_] := x + 1;
p[0, x_] := 2; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192309 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192310 *)
(* by Peter J. C. Moses, Jun 20 2011 *)
CROSSREFS
Sequence in context: A303565 A291856 A358996 * A151456 A336490 A230893
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved