login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A192311
0-sequence of reduction of (3n-2) by x^2 -> x+1.
2
1, 1, 8, 18, 44, 92, 187, 363, 688, 1276, 2330, 4200, 7493, 13253, 23272, 40614, 70504, 121828, 209663, 359535, 614576, 1047536, 1780918, 3020688, 5112649, 8636617, 14563592, 24517818, 41213348, 69180716
OFFSET
1,3
COMMENTS
See A192232 for definition of "k-sequence of reduction of [sequence] by [substitution]".
FORMULA
Empirical G.f.: x*(1-2*x+6*x^2-2*x^3)/(1-3*x+x^2+3*x^3-x^4-x^5). [Colin Barker, Feb 09 2012]
MATHEMATICA
c[n_] := 3 n - 2;
Table[c[n], {n, 1, 15}]
q[x_] := x + 1;
p[0, x_] := 1; p[n_, x_] := p[n - 1, x] + (x^n)*c[n + 1]
reductionRules = {x^y_?EvenQ -> q[x]^(y/2),
x^y_?OddQ -> x q[x]^((y - 1)/2)};
t = Table[
Last[Most[
FixedPointList[Expand[#1 /. reductionRules] &, p[n, x]]]], {n, 0,
30}]
Table[Coefficient[Part[t, n], x, 0], {n, 1, 30}] (* A192311 *)
Table[Coefficient[Part[t, n], x, 1], {n, 1, 30}] (* A192312 *)
(* by Peter J. C. Moses, Jun 20 2011 *)
CROSSREFS
Sequence in context: A082194 A211527 A279899 * A300161 A034714 A153388
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jun 27 2011
STATUS
approved