login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211527
Number of -1..1 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two, three, four or five distinct values for every i,j,k<=n.
1
8, 18, 42, 90, 192, 394, 806, 1618, 3244, 6444, 12798, 25306, 50056, 98830, 195252, 385546, 761880, 1505776, 2978372, 5893812, 11672100, 23128778, 45863610, 91000330, 180675314, 358921836, 713425574, 1418791694, 2822950098, 5619290544
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) - 4*a(n-2) - 16*a(n-3) + 27*a(n-4) + 8*a(n-5) - 35*a(n-6) + 10*a(n-7) + 10*a(n-8) - 4*a(n-9).
Empirical g.f.: 2*x*(4 - 11*x - 8*x^2 + 40*x^3 - 9*x^4 - 42*x^5 + 23*x^6 + 10*x^7 - 6*x^8) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - x - 2*x^2 + x^3)). - Colin Barker, Jul 18 2018
EXAMPLE
Some solutions for n=5:
.-1....1....1....1...-1...-1....0...-1....0...-1...-1....1...-1...-1....1...-1
..1....1....0...-1....0....1....1....1....1...-1...-1...-1....1....0....1....0
.-1...-1....1....0...-1....1...-1....1....0...-1....1....1...-1...-1....1....1
..1....1....0....1....1...-1....1...-1....1....1...-1...-1...-1....0....1...-1
.-1...-1...-1...-1....0....0...-1....1....0....1....1....0...-1....1...-1....1
.-1....1....1....1...-1...-1....0....1....1...-1....1....1....1...-1....0...-1
CROSSREFS
Sequence in context: A096283 A300524 A082194 * A279899 A192311 A300161
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 14 2012
STATUS
approved