login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211525
Number of -1..1 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two or four distinct values for every i,j,k<=n.
2
8, 14, 24, 44, 80, 152, 288, 560, 1088, 2144, 4224, 8384, 16640, 33152, 66048, 131840, 263168, 525824, 1050624, 2100224, 4198400, 8394752, 16785408, 33566720, 67125248, 134242304, 268468224, 536920064, 1073807360, 2147581952, 4295098368
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3).
From Colin Barker, Mar 09 2018: (Start)
G.f.: 2*x*(4 - x - 10*x^2) / ((1 - 2*x)*(1 - 2*x^2)).
a(n) = 3*2^(n/2) + 2^(n+1) for n even.
a(n) = 2^(n+1) + 2^((n+3)/2) for n odd.
(End)
EXAMPLE
Some solutions for n=5:
.-1....1....1...-1....1....0....1...-1...-1...-1....1...-1...-1....0....0...-1
..1....0....1...-1....0...-1....1....0....1...-1....1...-1....1....1...-1....0
.-1...-1...-1....1...-1....0....1...-1....1....1....1....1...-1....0....0...-1
..1....0...-1...-1....0....1...-1....0...-1....1...-1...-1....1...-1....1....0
.-1...-1...-1...-1....1....0....1...-1...-1...-1...-1....1....1....0....0....1
..1....0....1....1....0...-1...-1....0....1...-1....1....1....1...-1....1....0
CROSSREFS
Sequence in context: A275898 A248427 A090993 * A241161 A014002 A301787
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 14 2012
STATUS
approved