login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of -1..1 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two or four distinct values for every i,j,k<=n.
2

%I #12 Apr 25 2024 09:31:52

%S 8,14,24,44,80,152,288,560,1088,2144,4224,8384,16640,33152,66048,

%T 131840,263168,525824,1050624,2100224,4198400,8394752,16785408,

%U 33566720,67125248,134242304,268468224,536920064,1073807360,2147581952,4295098368

%N Number of -1..1 arrays x(i) of n+1 elements i=1..n+1 with set{t,u,v in 0,1}((x[i+t]+x[j+u]+x[k+v])*(-1)^(t+u+v)) having two or four distinct values for every i,j,k<=n.

%H R. H. Hardin, <a href="/A211525/b211525.txt">Table of n, a(n) for n = 1..79</a>

%F Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3).

%F From _Colin Barker_, Mar 09 2018: (Start)

%F G.f.: 2*x*(4 - x - 10*x^2) / ((1 - 2*x)*(1 - 2*x^2)).

%F a(n) = 3*2^(n/2) + 2^(n+1) for n even.

%F a(n) = 2^(n+1) + 2^((n+3)/2) for n odd.

%F (End)

%e Some solutions for n=5:

%e .-1....1....1...-1....1....0....1...-1...-1...-1....1...-1...-1....0....0...-1

%e ..1....0....1...-1....0...-1....1....0....1...-1....1...-1....1....1...-1....0

%e .-1...-1...-1....1...-1....0....1...-1....1....1....1....1...-1....0....0...-1

%e ..1....0...-1...-1....0....1...-1....0...-1....1...-1...-1....1...-1....1....0

%e .-1...-1...-1...-1....1....0....1...-1...-1...-1...-1....1....1....0....0....1

%e ..1....0....1....1....0...-1...-1....0....1...-1....1....1....1...-1....1....0

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 14 2012